A proposal of quantum data representation to improve the discrimination power

This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural computing 2020-09, Vol.19 (3), p.577-591
Hauptverfasser: Sousa, Rosilda B. de, Pereira, Emeson J. S., Cipolletti, Marina P., Ferreira, Tiago A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 3
container_start_page 577
container_title Natural computing
container_volume 19
creator Sousa, Rosilda B. de
Pereira, Emeson J. S.
Cipolletti, Marina P.
Ferreira, Tiago A. E.
description This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.
doi_str_mv 10.1007/s11047-019-09734-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185795715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185795715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-293b7385f09c46a8ee8c157e6ba7475bd2196f5e1b42fd597fb1701b434704f13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4hyI26RujtPEP2mIC5yjtE2g09Z0ScbEtydQJG6cbMvv2U8_Qi6BXwPneBMBuEDGQTGusBTscERmILFgClV1_N1XyLCG-pScxbjmvAApYUaeFnQMfvTRbKh3dLc3Q9pvaWeSocGOwUY7JJN6P9Dkab_N4g9L07ulXR_b0G_7YdqO_mDDOTlxZhPtxW-dk9e725flA1s93z8uFyvWliASK1TZYFlLx1UrKlNbW7c5rK0agwJl0xWgKictNKJwnVToGkCep1IgFw7KObma7uY4u72NSa_9Pgz5pS6glqgkgsyqYlK1wccYrNNjDmzCpwauv7HpCZvO2PQPNn3IpnIyxSwe3mz4O_2P6wtqwXDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185795715</pqid></control><display><type>article</type><title>A proposal of quantum data representation to improve the discrimination power</title><source>SpringerLink Journals</source><creator>Sousa, Rosilda B. de ; Pereira, Emeson J. S. ; Cipolletti, Marina P. ; Ferreira, Tiago A. E.</creator><creatorcontrib>Sousa, Rosilda B. de ; Pereira, Emeson J. S. ; Cipolletti, Marina P. ; Ferreira, Tiago A. E.</creatorcontrib><description>This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-019-09734-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Arbitration ; Artificial Intelligence ; Centroids ; Complex Systems ; Computer Science ; Computer simulation ; Discrimination ; Evolutionary Biology ; Genetic algorithms ; Mapping ; Processor Architectures ; Quantum theory ; Representations ; Theory of Computation</subject><ispartof>Natural computing, 2020-09, Vol.19 (3), p.577-591</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-293b7385f09c46a8ee8c157e6ba7475bd2196f5e1b42fd597fb1701b434704f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-019-09734-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-019-09734-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sousa, Rosilda B. de</creatorcontrib><creatorcontrib>Pereira, Emeson J. S.</creatorcontrib><creatorcontrib>Cipolletti, Marina P.</creatorcontrib><creatorcontrib>Ferreira, Tiago A. E.</creatorcontrib><title>A proposal of quantum data representation to improve the discrimination power</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.</description><subject>Arbitration</subject><subject>Artificial Intelligence</subject><subject>Centroids</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Discrimination</subject><subject>Evolutionary Biology</subject><subject>Genetic algorithms</subject><subject>Mapping</subject><subject>Processor Architectures</subject><subject>Quantum theory</subject><subject>Representations</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThF4hyI26RujtPEP2mIC5yjtE2g09Z0ScbEtydQJG6cbMvv2U8_Qi6BXwPneBMBuEDGQTGusBTscERmILFgClV1_N1XyLCG-pScxbjmvAApYUaeFnQMfvTRbKh3dLc3Q9pvaWeSocGOwUY7JJN6P9Dkab_N4g9L07ulXR_b0G_7YdqO_mDDOTlxZhPtxW-dk9e725flA1s93z8uFyvWliASK1TZYFlLx1UrKlNbW7c5rK0agwJl0xWgKictNKJwnVToGkCep1IgFw7KObma7uY4u72NSa_9Pgz5pS6glqgkgsyqYlK1wccYrNNjDmzCpwauv7HpCZvO2PQPNn3IpnIyxSwe3mz4O_2P6wtqwXDo</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sousa, Rosilda B. de</creator><creator>Pereira, Emeson J. S.</creator><creator>Cipolletti, Marina P.</creator><creator>Ferreira, Tiago A. E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>A proposal of quantum data representation to improve the discrimination power</title><author>Sousa, Rosilda B. de ; Pereira, Emeson J. S. ; Cipolletti, Marina P. ; Ferreira, Tiago A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-293b7385f09c46a8ee8c157e6ba7475bd2196f5e1b42fd597fb1701b434704f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arbitration</topic><topic>Artificial Intelligence</topic><topic>Centroids</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Discrimination</topic><topic>Evolutionary Biology</topic><topic>Genetic algorithms</topic><topic>Mapping</topic><topic>Processor Architectures</topic><topic>Quantum theory</topic><topic>Representations</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Rosilda B. de</creatorcontrib><creatorcontrib>Pereira, Emeson J. S.</creatorcontrib><creatorcontrib>Cipolletti, Marina P.</creatorcontrib><creatorcontrib>Ferreira, Tiago A. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, Rosilda B. de</au><au>Pereira, Emeson J. S.</au><au>Cipolletti, Marina P.</au><au>Ferreira, Tiago A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proposal of quantum data representation to improve the discrimination power</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>19</volume><issue>3</issue><spage>577</spage><epage>591</epage><pages>577-591</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-019-09734-w</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-7818
ispartof Natural computing, 2020-09, Vol.19 (3), p.577-591
issn 1567-7818
1572-9796
language eng
recordid cdi_proquest_journals_2185795715
source SpringerLink Journals
subjects Arbitration
Artificial Intelligence
Centroids
Complex Systems
Computer Science
Computer simulation
Discrimination
Evolutionary Biology
Genetic algorithms
Mapping
Processor Architectures
Quantum theory
Representations
Theory of Computation
title A proposal of quantum data representation to improve the discrimination power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proposal%20of%20quantum%20data%20representation%20to%20improve%20the%20discrimination%20power&rft.jtitle=Natural%20computing&rft.au=Sousa,%20Rosilda%20B.%20de&rft.date=2020-09-01&rft.volume=19&rft.issue=3&rft.spage=577&rft.epage=591&rft.pages=577-591&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-019-09734-w&rft_dat=%3Cproquest_cross%3E2185795715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185795715&rft_id=info:pmid/&rfr_iscdi=true