Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields

We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5
Hauptverfasser: Blair, Alexander I., Hampshire, Damian P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Blair, Alexander I.
Hampshire, Damian P.
description We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.
doi_str_mv 10.1109/TASC.2019.2895213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2185733271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8625477</ieee_id><sourcerecordid>2185733271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6sx_J5liCtUKLQnt22Saz7ZY0qbvJof_elBZPMwzP-w48hDwDmwCw_G09XRUTziCfcJ0rDuKGjEApnXAF6nbYmYJEcy7uyUOMe8ZAaqlG5GfZVlj7Zku7HdIi-M6XtqZFHwI2HW0d_W7rUxlOsbP1wCFd9UcMZdtUfdmdczNfHyL1DZ377Y4u7bbBoWM4Y13FR3LnbB3x6TrHZD17XxfzZPH18VlMF0kpRNolVkibMrbRAtIsV5hbdBqFzLmVzEkHGVNSKZ5LVykmmOCiYtJhBmnKN0KMyeul9hja3x5jZ_ZtH5rho-GgVSYEz2Cg4EKVoY0xoDPH4A82nAwwc7ZozhbN2aK5WhwyL5eMR8R_XqdcySwTfwcfbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185733271</pqid></control><display><type>article</type><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Blair, Alexander I. ; Hampshire, Damian P.</creator><creatorcontrib>Blair, Alexander I. ; Hampshire, Damian P.</creatorcontrib><description>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2895213</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Critical current density ; Critical current density (superconductivity) ; Critical temperature ; Electric fields ; Grain boundaries ; Grain size ; Josephson junctions ; junctions ; Magnetic fields ; Mathematical model ; Polycrystals ; Proximity effect (electricity) ; Superconducting films ; Superconducting magnets ; TDGL ; thin films ; Time dependence ; Two dimensional models</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</citedby><cites>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</cites><orcidid>0000-0002-4876-1007 ; 0000-0001-8552-8514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8625477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8625477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blair, Alexander I.</creatorcontrib><creatorcontrib>Hampshire, Damian P.</creatorcontrib><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</description><subject>Computer simulation</subject><subject>Critical current density</subject><subject>Critical current density (superconductivity)</subject><subject>Critical temperature</subject><subject>Electric fields</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Josephson junctions</subject><subject>junctions</subject><subject>Magnetic fields</subject><subject>Mathematical model</subject><subject>Polycrystals</subject><subject>Proximity effect (electricity)</subject><subject>Superconducting films</subject><subject>Superconducting magnets</subject><subject>TDGL</subject><subject>thin films</subject><subject>Time dependence</subject><subject>Two dimensional models</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6sx_J5liCtUKLQnt22Saz7ZY0qbvJof_elBZPMwzP-w48hDwDmwCw_G09XRUTziCfcJ0rDuKGjEApnXAF6nbYmYJEcy7uyUOMe8ZAaqlG5GfZVlj7Zku7HdIi-M6XtqZFHwI2HW0d_W7rUxlOsbP1wCFd9UcMZdtUfdmdczNfHyL1DZ377Y4u7bbBoWM4Y13FR3LnbB3x6TrHZD17XxfzZPH18VlMF0kpRNolVkibMrbRAtIsV5hbdBqFzLmVzEkHGVNSKZ5LVykmmOCiYtJhBmnKN0KMyeul9hja3x5jZ_ZtH5rho-GgVSYEz2Cg4EKVoY0xoDPH4A82nAwwc7ZozhbN2aK5WhwyL5eMR8R_XqdcySwTfwcfbRc</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Blair, Alexander I.</creator><creator>Hampshire, Damian P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4876-1007</orcidid><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid></search><sort><creationdate>20190801</creationdate><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><author>Blair, Alexander I. ; Hampshire, Damian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Critical current density</topic><topic>Critical current density (superconductivity)</topic><topic>Critical temperature</topic><topic>Electric fields</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Josephson junctions</topic><topic>junctions</topic><topic>Magnetic fields</topic><topic>Mathematical model</topic><topic>Polycrystals</topic><topic>Proximity effect (electricity)</topic><topic>Superconducting films</topic><topic>Superconducting magnets</topic><topic>TDGL</topic><topic>thin films</topic><topic>Time dependence</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, Alexander I.</creatorcontrib><creatorcontrib>Hampshire, Damian P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blair, Alexander I.</au><au>Hampshire, Damian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2895213</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4876-1007</orcidid><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2185733271
source IEEE Electronic Library (IEL)
subjects Computer simulation
Critical current density
Critical current density (superconductivity)
Critical temperature
Electric fields
Grain boundaries
Grain size
Josephson junctions
junctions
Magnetic fields
Mathematical model
Polycrystals
Proximity effect (electricity)
Superconducting films
Superconducting magnets
TDGL
thin films
Time dependence
Two dimensional models
title Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Critical%20Current%20of%20Polycrystalline%20Superconducting%20Films%20in%20High%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Blair,%20Alexander%20I.&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2895213&rft_dat=%3Cproquest_RIE%3E2185733271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185733271&rft_id=info:pmid/&rft_ieee_id=8625477&rfr_iscdi=true