Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields
We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical cur...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Blair, Alexander I. Hampshire, Damian P. |
description | We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor. |
doi_str_mv | 10.1109/TASC.2019.2895213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2185733271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8625477</ieee_id><sourcerecordid>2185733271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6sx_J5liCtUKLQnt22Saz7ZY0qbvJof_elBZPMwzP-w48hDwDmwCw_G09XRUTziCfcJ0rDuKGjEApnXAF6nbYmYJEcy7uyUOMe8ZAaqlG5GfZVlj7Zku7HdIi-M6XtqZFHwI2HW0d_W7rUxlOsbP1wCFd9UcMZdtUfdmdczNfHyL1DZ377Y4u7bbBoWM4Y13FR3LnbB3x6TrHZD17XxfzZPH18VlMF0kpRNolVkibMrbRAtIsV5hbdBqFzLmVzEkHGVNSKZ5LVykmmOCiYtJhBmnKN0KMyeul9hja3x5jZ_ZtH5rho-GgVSYEz2Cg4EKVoY0xoDPH4A82nAwwc7ZozhbN2aK5WhwyL5eMR8R_XqdcySwTfwcfbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185733271</pqid></control><display><type>article</type><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Blair, Alexander I. ; Hampshire, Damian P.</creator><creatorcontrib>Blair, Alexander I. ; Hampshire, Damian P.</creatorcontrib><description>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2895213</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Critical current density ; Critical current density (superconductivity) ; Critical temperature ; Electric fields ; Grain boundaries ; Grain size ; Josephson junctions ; junctions ; Magnetic fields ; Mathematical model ; Polycrystals ; Proximity effect (electricity) ; Superconducting films ; Superconducting magnets ; TDGL ; thin films ; Time dependence ; Two dimensional models</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</citedby><cites>FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</cites><orcidid>0000-0002-4876-1007 ; 0000-0001-8552-8514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8625477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8625477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blair, Alexander I.</creatorcontrib><creatorcontrib>Hampshire, Damian P.</creatorcontrib><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</description><subject>Computer simulation</subject><subject>Critical current density</subject><subject>Critical current density (superconductivity)</subject><subject>Critical temperature</subject><subject>Electric fields</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Josephson junctions</subject><subject>junctions</subject><subject>Magnetic fields</subject><subject>Mathematical model</subject><subject>Polycrystals</subject><subject>Proximity effect (electricity)</subject><subject>Superconducting films</subject><subject>Superconducting magnets</subject><subject>TDGL</subject><subject>thin films</subject><subject>Time dependence</subject><subject>Two dimensional models</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy6sx_J5liCtUKLQnt22Saz7ZY0qbvJof_elBZPMwzP-w48hDwDmwCw_G09XRUTziCfcJ0rDuKGjEApnXAF6nbYmYJEcy7uyUOMe8ZAaqlG5GfZVlj7Zku7HdIi-M6XtqZFHwI2HW0d_W7rUxlOsbP1wCFd9UcMZdtUfdmdczNfHyL1DZ377Y4u7bbBoWM4Y13FR3LnbB3x6TrHZD17XxfzZPH18VlMF0kpRNolVkibMrbRAtIsV5hbdBqFzLmVzEkHGVNSKZ5LVykmmOCiYtJhBmnKN0KMyeul9hja3x5jZ_ZtH5rho-GgVSYEz2Cg4EKVoY0xoDPH4A82nAwwc7ZozhbN2aK5WhwyL5eMR8R_XqdcySwTfwcfbRc</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Blair, Alexander I.</creator><creator>Hampshire, Damian P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4876-1007</orcidid><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid></search><sort><creationdate>20190801</creationdate><title>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</title><author>Blair, Alexander I. ; Hampshire, Damian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a34a600b8316795e9aef8e3492a40f4f1705455294fd5030323d04fe71662b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Critical current density</topic><topic>Critical current density (superconductivity)</topic><topic>Critical temperature</topic><topic>Electric fields</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Josephson junctions</topic><topic>junctions</topic><topic>Magnetic fields</topic><topic>Mathematical model</topic><topic>Polycrystals</topic><topic>Proximity effect (electricity)</topic><topic>Superconducting films</topic><topic>Superconducting magnets</topic><topic>TDGL</topic><topic>thin films</topic><topic>Time dependence</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, Alexander I.</creatorcontrib><creatorcontrib>Hampshire, Damian P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blair, Alexander I.</au><au>Hampshire, Damian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have performed simulations using time-dependent Ginzburg-Landau theory on a two-dimensional (2-D) polycrystalline system, where grain boundaries are modeled as narrow regions with a locally reduced critical temperature (T c ). For the small system sizes investigated, we find that the critical current density (J c ) is not sensitive to changes in grain size until the grain size is sufficiently small that it limits the average superparticle density in the system through the proximity effect. Furthermore, once T c in the boundary regions is sufficiently low relative to the surrounding superconductor that grain boundary regions act as preferred channels for flux flow, further reductions in the boundary T c only weakly reduce J c across the superconductor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2895213</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4876-1007</orcidid><orcidid>https://orcid.org/0000-0001-8552-8514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2185733271 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Critical current density Critical current density (superconductivity) Critical temperature Electric fields Grain boundaries Grain size Josephson junctions junctions Magnetic fields Mathematical model Polycrystals Proximity effect (electricity) Superconducting films Superconducting magnets TDGL thin films Time dependence Two dimensional models |
title | Modeling the Critical Current of Polycrystalline Superconducting Films in High Magnetic Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Critical%20Current%20of%20Polycrystalline%20Superconducting%20Films%20in%20High%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Blair,%20Alexander%20I.&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2895213&rft_dat=%3Cproquest_RIE%3E2185733271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185733271&rft_id=info:pmid/&rft_ieee_id=8625477&rfr_iscdi=true |