Exploring Users' Internal Influence from Reviews for Social Recommendation

In recent years, we have witnessed a flourish of social review websites. Internet users can easily share their experiences on some products and services with their friends. Therefore, measuring interpersonal influence becomes a popular method for recommender systems. However, traditional works are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2019-03, Vol.21 (3), p.771-781
Hauptverfasser: Zhao, Guoshuai, Lei, Xiaojiang, Qian, Xueming, Mei, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 3
container_start_page 771
container_title IEEE transactions on multimedia
container_volume 21
creator Zhao, Guoshuai
Lei, Xiaojiang
Qian, Xueming
Mei, Tao
description In recent years, we have witnessed a flourish of social review websites. Internet users can easily share their experiences on some products and services with their friends. Therefore, measuring interpersonal influence becomes a popular method for recommender systems. However, traditional works are all based on external tangible activities, such as following, retweeting, mentioning, etc. In this paper, we explore user internal factors to measure his/her influence on a specific domain, namely, the social network on local businesses. The proposed user internal factors include user sentimental deviations and the review's reliability. The internal factors are not from explicit behavior but could help us to understand users. In addition, we utilize an attention mechanism that could auto-learn the weights of different factors. Through a case study on the Yelp dataset, we found that the proposed user internal factors on influence, that is, the proposed user sentimental deviations and the review's reliability, are effective in improving the accuracy of rating predictions.
doi_str_mv 10.1109/TMM.2018.2863598
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2185732977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425792</ieee_id><sourcerecordid>2185732977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-abad7ac3bdd5e9893429407917b9216f1a48ed67329a66396c18b089a94b91773</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKd3wUvBg6fOfLVJjjKmTjaEuZ1Dmr6VjraZSefHf2_qhqf3Ofyel4cfQtcETwjB6n69XE4oJnJCZc4yJU_QiChOUoyFOI05ozhVlOBzdBHCFmPCMyxG6GX2vWucr7v3ZBPAh7tk3vXgO9PEUDV76CwklXdtsoLPGr5CUjmfvDlbR2IF1rUtdKXpa9ddorPKNAGujneMNo-z9fQ5Xbw-zacPi9RSRfrUFKYUxrKiLDNQUjFOFcdCEVHEfXlFDJdQ5oJRZfKcqdwSWWCpjOJFhAQbo9vD3513H3sIvd66_bA4aEpkNhT_KHygrHcheKj0ztet8T-aYD0Y09GYHozpo7FYuTlUagD4xyWnmVCU_QI2hmYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185732977</pqid></control><display><type>article</type><title>Exploring Users' Internal Influence from Reviews for Social Recommendation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Guoshuai ; Lei, Xiaojiang ; Qian, Xueming ; Mei, Tao</creator><creatorcontrib>Zhao, Guoshuai ; Lei, Xiaojiang ; Qian, Xueming ; Mei, Tao</creatorcontrib><description>In recent years, we have witnessed a flourish of social review websites. Internet users can easily share their experiences on some products and services with their friends. Therefore, measuring interpersonal influence becomes a popular method for recommender systems. However, traditional works are all based on external tangible activities, such as following, retweeting, mentioning, etc. In this paper, we explore user internal factors to measure his/her influence on a specific domain, namely, the social network on local businesses. The proposed user internal factors include user sentimental deviations and the review's reliability. The internal factors are not from explicit behavior but could help us to understand users. In addition, we utilize an attention mechanism that could auto-learn the weights of different factors. Through a case study on the Yelp dataset, we found that the proposed user internal factors on influence, that is, the proposed user sentimental deviations and the review's reliability, are effective in improving the accuracy of rating predictions.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2863598</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Collaboration ; Data mining ; Feature extraction ; interpersonal influence ; Matrix decomposition ; recom-mender system ; Recommender systems ; Reliability ; Reliability aspects ; review sentiment ; social network ; Social network services ; Social networks ; Websites</subject><ispartof>IEEE transactions on multimedia, 2019-03, Vol.21 (3), p.771-781</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-abad7ac3bdd5e9893429407917b9216f1a48ed67329a66396c18b089a94b91773</citedby><cites>FETCH-LOGICAL-c291t-abad7ac3bdd5e9893429407917b9216f1a48ed67329a66396c18b089a94b91773</cites><orcidid>0000-0002-3173-6307 ; 0000-0003-2497-7732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425792$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8425792$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Lei, Xiaojiang</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><title>Exploring Users' Internal Influence from Reviews for Social Recommendation</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In recent years, we have witnessed a flourish of social review websites. Internet users can easily share their experiences on some products and services with their friends. Therefore, measuring interpersonal influence becomes a popular method for recommender systems. However, traditional works are all based on external tangible activities, such as following, retweeting, mentioning, etc. In this paper, we explore user internal factors to measure his/her influence on a specific domain, namely, the social network on local businesses. The proposed user internal factors include user sentimental deviations and the review's reliability. The internal factors are not from explicit behavior but could help us to understand users. In addition, we utilize an attention mechanism that could auto-learn the weights of different factors. Through a case study on the Yelp dataset, we found that the proposed user internal factors on influence, that is, the proposed user sentimental deviations and the review's reliability, are effective in improving the accuracy of rating predictions.</description><subject>Collaboration</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>interpersonal influence</subject><subject>Matrix decomposition</subject><subject>recom-mender system</subject><subject>Recommender systems</subject><subject>Reliability</subject><subject>Reliability aspects</subject><subject>review sentiment</subject><subject>social network</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Websites</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxoMoOKd3wUvBg6fOfLVJjjKmTjaEuZ1Dmr6VjraZSefHf2_qhqf3Ofyel4cfQtcETwjB6n69XE4oJnJCZc4yJU_QiChOUoyFOI05ozhVlOBzdBHCFmPCMyxG6GX2vWucr7v3ZBPAh7tk3vXgO9PEUDV76CwklXdtsoLPGr5CUjmfvDlbR2IF1rUtdKXpa9ddorPKNAGujneMNo-z9fQ5Xbw-zacPi9RSRfrUFKYUxrKiLDNQUjFOFcdCEVHEfXlFDJdQ5oJRZfKcqdwSWWCpjOJFhAQbo9vD3513H3sIvd66_bA4aEpkNhT_KHygrHcheKj0ztet8T-aYD0Y09GYHozpo7FYuTlUagD4xyWnmVCU_QI2hmYw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhao, Guoshuai</creator><creator>Lei, Xiaojiang</creator><creator>Qian, Xueming</creator><creator>Mei, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid></search><sort><creationdate>20190301</creationdate><title>Exploring Users' Internal Influence from Reviews for Social Recommendation</title><author>Zhao, Guoshuai ; Lei, Xiaojiang ; Qian, Xueming ; Mei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-abad7ac3bdd5e9893429407917b9216f1a48ed67329a66396c18b089a94b91773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collaboration</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>interpersonal influence</topic><topic>Matrix decomposition</topic><topic>recom-mender system</topic><topic>Recommender systems</topic><topic>Reliability</topic><topic>Reliability aspects</topic><topic>review sentiment</topic><topic>social network</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Lei, Xiaojiang</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Guoshuai</au><au>Lei, Xiaojiang</au><au>Qian, Xueming</au><au>Mei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Users' Internal Influence from Reviews for Social Recommendation</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>771</spage><epage>781</epage><pages>771-781</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In recent years, we have witnessed a flourish of social review websites. Internet users can easily share their experiences on some products and services with their friends. Therefore, measuring interpersonal influence becomes a popular method for recommender systems. However, traditional works are all based on external tangible activities, such as following, retweeting, mentioning, etc. In this paper, we explore user internal factors to measure his/her influence on a specific domain, namely, the social network on local businesses. The proposed user internal factors include user sentimental deviations and the review's reliability. The internal factors are not from explicit behavior but could help us to understand users. In addition, we utilize an attention mechanism that could auto-learn the weights of different factors. Through a case study on the Yelp dataset, we found that the proposed user internal factors on influence, that is, the proposed user sentimental deviations and the review's reliability, are effective in improving the accuracy of rating predictions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2863598</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2019-03, Vol.21 (3), p.771-781
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2185732977
source IEEE Electronic Library (IEL)
subjects Collaboration
Data mining
Feature extraction
interpersonal influence
Matrix decomposition
recom-mender system
Recommender systems
Reliability
Reliability aspects
review sentiment
social network
Social network services
Social networks
Websites
title Exploring Users' Internal Influence from Reviews for Social Recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Users'%20Internal%20Influence%20from%20Reviews%20for%20Social%20Recommendation&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhao,%20Guoshuai&rft.date=2019-03-01&rft.volume=21&rft.issue=3&rft.spage=771&rft.epage=781&rft.pages=771-781&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2863598&rft_dat=%3Cproquest_RIE%3E2185732977%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185732977&rft_id=info:pmid/&rft_ieee_id=8425792&rfr_iscdi=true