Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy

In this paper, five types of superjunction (SJ) configurations are investigated in the silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT). technology computer aided design simulations are carried out to give insight into the mechanism for improving turn-off loss ( {E} _{ \mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2019-03, Vol.66 (3), p.1409-1415
Hauptverfasser: Zhang, Long, Zhu, Jing, Ma, Jie, Cao, Shilin, Li, Ankang, Li, Shaohong, Ye, Ran, Sun, Weifeng, Zhao, Jianfeng, Shi, Longxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 3
container_start_page 1409
container_title IEEE transactions on electron devices
container_volume 66
creator Zhang, Long
Zhu, Jing
Ma, Jie
Cao, Shilin
Li, Ankang
Li, Shaohong
Ye, Ran
Sun, Weifeng
Zhao, Jianfeng
Shi, Longxing
description In this paper, five types of superjunction (SJ) configurations are investigated in the silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT). technology computer aided design simulations are carried out to give insight into the mechanism for improving turn-off loss ( {E} _{ \mathrm{\scriptscriptstyle OFF}} ) by adopting SJ in the drift region of SOI-LIGBT. In mechanism revealing, collector-emitter voltage rising during the inductive load turn-off is divided into two phases: slow rising phase (SRP) and rapid rising phase (RRP). It is found that the depletion accompanying with carrier extraction in the drift region and at the collector is responsible for the SRP and RRP, respectively, and accordingly, the difference of turn-off transient among the five types of SJ configurations is clarified. Moreover, reduced {E} _{ \mathrm{\scriptscriptstyle OFF}} can be realized by lowering the transition voltage from SRP to RRP ( {V} _{\text {A}} ). Low electric potential from the emitter side can be delivered to the collector side through the undepleted regions in P-pillar, which largely determine {V} _{\text {A}} . According to the above-mentioned mechanism, an optimization strategy and a novel SJ SOI-LIGBT with composite P-pillar are proposed for the first time. The proposed SJ SOI-LIGBT achieves an {E} _{ \mathrm{\scriptscriptstyle OFF}}~76.3 % lower than the conventional SOI-LIGBT at ON-state voltage drop of ~1.41 V.
doi_str_mv 10.1109/TED.2019.2894813
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2185731269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8637045</ieee_id><sourcerecordid>2185731269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5b0dcd981005592e0f8220d977f5ec4c6e9273ac0ae58ef973ec13615ab67e303</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kf3yprXWQiWHxouXsN3MakqbxN3kUH-9KS2ehoHnfYd5ELqlZEIpMQ_57GXCCDUTpk2qKT9DIyqESoxM5TkaEUJ1Yrjml-gqxs2wyjRlI_SZ96FOMu9xHmwdK6g73Hi86lsIm752XdXUeJUt8NJ2EOwWL-bPeXzE7-C-bV3FHbZ1ibO2q3bVrz3SXRjYr_01uvB2G-HmNMfo43WWT9-SZTZfTJ-WieNCdYlYk9KVRlNChDAMiNeMkdIo5QW41EkwTHHriAWhwRvFwVEuqbBrqYATPkb3x942ND89xK7YNMNTw8mCUS0Up0yagSJHyoUmxgC-aEO1s2FfUFIcDBaDweJgsDgZHCJ3x0gFAP-4llyRVPA_axxrwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185731269</pqid></control><display><type>article</type><title>Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Long ; Zhu, Jing ; Ma, Jie ; Cao, Shilin ; Li, Ankang ; Li, Shaohong ; Ye, Ran ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</creator><creatorcontrib>Zhang, Long ; Zhu, Jing ; Ma, Jie ; Cao, Shilin ; Li, Ankang ; Li, Shaohong ; Ye, Ran ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</creatorcontrib><description><![CDATA[In this paper, five types of superjunction (SJ) configurations are investigated in the silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT). technology computer aided design simulations are carried out to give insight into the mechanism for improving turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>) by adopting SJ in the drift region of SOI-LIGBT. In mechanism revealing, collector-emitter voltage rising during the inductive load turn-off is divided into two phases: slow rising phase (SRP) and rapid rising phase (RRP). It is found that the depletion accompanying with carrier extraction in the drift region and at the collector is responsible for the SRP and RRP, respectively, and accordingly, the difference of turn-off transient among the five types of SJ configurations is clarified. Moreover, reduced <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> can be realized by lowering the transition voltage from SRP to RRP (<inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>). Low electric potential from the emitter side can be delivered to the collector side through the undepleted regions in P-pillar, which largely determine <inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>. According to the above-mentioned mechanism, an optimization strategy and a novel SJ SOI-LIGBT with composite P-pillar are proposed for the first time. The proposed SJ SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}}~76.3 </tex-math></inline-formula>% lower than the conventional SOI-LIGBT at ON-state voltage drop of ~1.41 V.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2019.2894813</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Breakdown voltage (BV) ; CAD ; Computer aided design ; Computer simulation ; Configurations ; Depletion ; Doping ; Drift ; Electric potential ; Emitters ; fast turn-off ; high speed ; Insulated gate bipolar transistors ; Integrated circuit modeling ; Load modeling ; ON-state voltage drop (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V ₒₙ) ; Optimization ; saturation voltage ; Semiconductor process modeling ; semisuperjunction (semi-SJ) ; Silicon-on-insulator ; silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT) ; SOI (semiconductors) ; stored carriers ; superjunction (SJ) ; tradeoff ; Transient analysis ; turn-off loss (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;E OFF) ; Voltage drop</subject><ispartof>IEEE transactions on electron devices, 2019-03, Vol.66 (3), p.1409-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5b0dcd981005592e0f8220d977f5ec4c6e9273ac0ae58ef973ec13615ab67e303</citedby><cites>FETCH-LOGICAL-c357t-5b0dcd981005592e0f8220d977f5ec4c6e9273ac0ae58ef973ec13615ab67e303</cites><orcidid>0000-0002-3289-8877 ; 0000-0003-4891-7304 ; 0000-0003-0254-6085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8637045$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8637045$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Li, Ankang</creatorcontrib><creatorcontrib>Li, Shaohong</creatorcontrib><creatorcontrib>Ye, Ran</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><title>Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this paper, five types of superjunction (SJ) configurations are investigated in the silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT). technology computer aided design simulations are carried out to give insight into the mechanism for improving turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>) by adopting SJ in the drift region of SOI-LIGBT. In mechanism revealing, collector-emitter voltage rising during the inductive load turn-off is divided into two phases: slow rising phase (SRP) and rapid rising phase (RRP). It is found that the depletion accompanying with carrier extraction in the drift region and at the collector is responsible for the SRP and RRP, respectively, and accordingly, the difference of turn-off transient among the five types of SJ configurations is clarified. Moreover, reduced <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> can be realized by lowering the transition voltage from SRP to RRP (<inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>). Low electric potential from the emitter side can be delivered to the collector side through the undepleted regions in P-pillar, which largely determine <inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>. According to the above-mentioned mechanism, an optimization strategy and a novel SJ SOI-LIGBT with composite P-pillar are proposed for the first time. The proposed SJ SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}}~76.3 </tex-math></inline-formula>% lower than the conventional SOI-LIGBT at ON-state voltage drop of ~1.41 V.]]></description><subject>Breakdown voltage (BV)</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Depletion</subject><subject>Doping</subject><subject>Drift</subject><subject>Electric potential</subject><subject>Emitters</subject><subject>fast turn-off</subject><subject>high speed</subject><subject>Insulated gate bipolar transistors</subject><subject>Integrated circuit modeling</subject><subject>Load modeling</subject><subject>ON-state voltage drop (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V ₒₙ)</subject><subject>Optimization</subject><subject>saturation voltage</subject><subject>Semiconductor process modeling</subject><subject>semisuperjunction (semi-SJ)</subject><subject>Silicon-on-insulator</subject><subject>silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT)</subject><subject>SOI (semiconductors)</subject><subject>stored carriers</subject><subject>superjunction (SJ)</subject><subject>tradeoff</subject><subject>Transient analysis</subject><subject>turn-off loss (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;E OFF)</subject><subject>Voltage drop</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kf3yprXWQiWHxouXsN3MakqbxN3kUH-9KS2ehoHnfYd5ELqlZEIpMQ_57GXCCDUTpk2qKT9DIyqESoxM5TkaEUJ1Yrjml-gqxs2wyjRlI_SZ96FOMu9xHmwdK6g73Hi86lsIm752XdXUeJUt8NJ2EOwWL-bPeXzE7-C-bV3FHbZ1ibO2q3bVrz3SXRjYr_01uvB2G-HmNMfo43WWT9-SZTZfTJ-WieNCdYlYk9KVRlNChDAMiNeMkdIo5QW41EkwTHHriAWhwRvFwVEuqbBrqYATPkb3x942ND89xK7YNMNTw8mCUS0Up0yagSJHyoUmxgC-aEO1s2FfUFIcDBaDweJgsDgZHCJ3x0gFAP-4llyRVPA_axxrwQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhang, Long</creator><creator>Zhu, Jing</creator><creator>Ma, Jie</creator><creator>Cao, Shilin</creator><creator>Li, Ankang</creator><creator>Li, Shaohong</creator><creator>Ye, Ran</creator><creator>Sun, Weifeng</creator><creator>Zhao, Jianfeng</creator><creator>Shi, Longxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4891-7304</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></search><sort><creationdate>20190301</creationdate><title>Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy</title><author>Zhang, Long ; Zhu, Jing ; Ma, Jie ; Cao, Shilin ; Li, Ankang ; Li, Shaohong ; Ye, Ran ; Sun, Weifeng ; Zhao, Jianfeng ; Shi, Longxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5b0dcd981005592e0f8220d977f5ec4c6e9273ac0ae58ef973ec13615ab67e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Breakdown voltage (BV)</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Depletion</topic><topic>Doping</topic><topic>Drift</topic><topic>Electric potential</topic><topic>Emitters</topic><topic>fast turn-off</topic><topic>high speed</topic><topic>Insulated gate bipolar transistors</topic><topic>Integrated circuit modeling</topic><topic>Load modeling</topic><topic>ON-state voltage drop (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V ₒₙ)</topic><topic>Optimization</topic><topic>saturation voltage</topic><topic>Semiconductor process modeling</topic><topic>semisuperjunction (semi-SJ)</topic><topic>Silicon-on-insulator</topic><topic>silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT)</topic><topic>SOI (semiconductors)</topic><topic>stored carriers</topic><topic>superjunction (SJ)</topic><topic>tradeoff</topic><topic>Transient analysis</topic><topic>turn-off loss (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;E OFF)</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Li, Ankang</creatorcontrib><creatorcontrib>Li, Shaohong</creatorcontrib><creatorcontrib>Ye, Ran</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Shi, Longxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Long</au><au>Zhu, Jing</au><au>Ma, Jie</au><au>Cao, Shilin</au><au>Li, Ankang</au><au>Li, Shaohong</au><au>Ye, Ran</au><au>Sun, Weifeng</au><au>Zhao, Jianfeng</au><au>Shi, Longxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>66</volume><issue>3</issue><spage>1409</spage><epage>1415</epage><pages>1409-1415</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this paper, five types of superjunction (SJ) configurations are investigated in the silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT). technology computer aided design simulations are carried out to give insight into the mechanism for improving turn-off loss (<inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula>) by adopting SJ in the drift region of SOI-LIGBT. In mechanism revealing, collector-emitter voltage rising during the inductive load turn-off is divided into two phases: slow rising phase (SRP) and rapid rising phase (RRP). It is found that the depletion accompanying with carrier extraction in the drift region and at the collector is responsible for the SRP and RRP, respectively, and accordingly, the difference of turn-off transient among the five types of SJ configurations is clarified. Moreover, reduced <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> can be realized by lowering the transition voltage from SRP to RRP (<inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>). Low electric potential from the emitter side can be delivered to the collector side through the undepleted regions in P-pillar, which largely determine <inline-formula> <tex-math notation="LaTeX">{V} _{\text {A}} </tex-math></inline-formula>. According to the above-mentioned mechanism, an optimization strategy and a novel SJ SOI-LIGBT with composite P-pillar are proposed for the first time. The proposed SJ SOI-LIGBT achieves an <inline-formula> <tex-math notation="LaTeX">{E} _{ \mathrm{\scriptscriptstyle OFF}}~76.3 </tex-math></inline-formula>% lower than the conventional SOI-LIGBT at ON-state voltage drop of ~1.41 V.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2019.2894813</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0003-4891-7304</orcidid><orcidid>https://orcid.org/0000-0003-0254-6085</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2019-03, Vol.66 (3), p.1409-1415
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2185731269
source IEEE Electronic Library (IEL)
subjects Breakdown voltage (BV)
CAD
Computer aided design
Computer simulation
Configurations
Depletion
Doping
Drift
Electric potential
Emitters
fast turn-off
high speed
Insulated gate bipolar transistors
Integrated circuit modeling
Load modeling
ON-state voltage drop (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V ₒₙ)
Optimization
saturation voltage
Semiconductor process modeling
semisuperjunction (semi-SJ)
Silicon-on-insulator
silicon-on-insulator lateral insulated-gate bipolar transistor (SOI-LIGBT)
SOI (semiconductors)
stored carriers
superjunction (SJ)
tradeoff
Transient analysis
turn-off loss (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">E OFF)
Voltage drop
title Turn-Off Transient of Superjunction SOI Lateral IGBTs: Mechanism and Optimization Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turn-Off%20Transient%20of%20Superjunction%20SOI%20Lateral%20IGBTs:%20Mechanism%20and%20Optimization%20Strategy&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Long&rft.date=2019-03-01&rft.volume=66&rft.issue=3&rft.spage=1409&rft.epage=1415&rft.pages=1409-1415&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2019.2894813&rft_dat=%3Cproquest_RIE%3E2185731269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185731269&rft_id=info:pmid/&rft_ieee_id=8637045&rfr_iscdi=true