REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T
We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at t = ∞ of the nonsymmetric Macdonald polynomials E w λ ( q , t ), w ∈ W , where λ is a dominant integral weight and W is a finite Weyl group....
Gespeichert in:
Veröffentlicht in: | Transformation groups 2019-03, Vol.24 (1), p.155-191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Transformation groups |
container_volume | 24 |
creator | NAITO, SATOSHI NOMOTO, FUMIHIKO SAGAKI, DAISUKE |
description | We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at
t
= ∞ of the nonsymmetric Macdonald polynomials
E
w
λ
(
q
,
t
),
w
∈
W
, where λ is a dominant integral weight and
W
is a finite Weyl group. |
doi_str_mv | 10.1007/s00031-017-9467-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185201197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185201197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2310-f36d7e4126c0029c68d92221c1c3d6b576e4c81b6e413d7fd0ea0c4aeeae54f43</originalsourceid><addsrcrecordid>eNp1kLFOwzAYhCMEEqXwAGyWmA2_ncRJxyh1aUQSV44rURYrTRxEBS0kdGDjEVh5PZ4ER0EwMZ3l--5-6RznnMAlAQiuOgBwCQYS4InHAgwHzoj49scP2e2hfUPoYs9l9Ng56boNWJAxNnI-JF9IXvBcRSoROVZzLiRXSYySXHFpvcFAYobiOZd8mic3WEj59f5ZIMnjpSx6eyZktkyjXpHtQMWCx0mUJne_6VzkxSrLuJK2PIviqcijdIoWIl3lIrNsgSKF1Klz1JSPnTn70bGznHEVz3EqrpM4SnFFXQK4cVkdGI9QVgHQScXCekIpJRWp3Jqt_YAZrwrJ2gpx66CpwZRQeaUxpfG9xnPHzsXQ-9zuXvame9Wb3b7d2pOaktCnQMgksBQZqKrddV1rGv3cPjyV7ZsmoPvh9TC8tnvqfngNNkOHTGfZ7b1p_5r_D30DZGp79g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185201197</pqid></control><display><type>article</type><title>REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T</title><source>SpringerLink Journals - AutoHoldings</source><creator>NAITO, SATOSHI ; NOMOTO, FUMIHIKO ; SAGAKI, DAISUKE</creator><creatorcontrib>NAITO, SATOSHI ; NOMOTO, FUMIHIKO ; SAGAKI, DAISUKE</creatorcontrib><description>We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at
t
= ∞ of the nonsymmetric Macdonald polynomials
E
w
λ
(
q
,
t
),
w
∈
W
, where λ is a dominant integral weight and
W
is a finite Weyl group.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-017-9467-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Polynomials ; Representations ; Topological Groups ; Weight</subject><ispartof>Transformation groups, 2019-03, Vol.24 (1), p.155-191</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2310-f36d7e4126c0029c68d92221c1c3d6b576e4c81b6e413d7fd0ea0c4aeeae54f43</citedby><cites>FETCH-LOGICAL-c2310-f36d7e4126c0029c68d92221c1c3d6b576e4c81b6e413d7fd0ea0c4aeeae54f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00031-017-9467-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00031-017-9467-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>NAITO, SATOSHI</creatorcontrib><creatorcontrib>NOMOTO, FUMIHIKO</creatorcontrib><creatorcontrib>SAGAKI, DAISUKE</creatorcontrib><title>REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at
t
= ∞ of the nonsymmetric Macdonald polynomials
E
w
λ
(
q
,
t
),
w
∈
W
, where λ is a dominant integral weight and
W
is a finite Weyl group.</description><subject>Algebra</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Topological Groups</subject><subject>Weight</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAYhCMEEqXwAGyWmA2_ncRJxyh1aUQSV44rURYrTRxEBS0kdGDjEVh5PZ4ER0EwMZ3l--5-6RznnMAlAQiuOgBwCQYS4InHAgwHzoj49scP2e2hfUPoYs9l9Ng56boNWJAxNnI-JF9IXvBcRSoROVZzLiRXSYySXHFpvcFAYobiOZd8mic3WEj59f5ZIMnjpSx6eyZktkyjXpHtQMWCx0mUJne_6VzkxSrLuJK2PIviqcijdIoWIl3lIrNsgSKF1Klz1JSPnTn70bGznHEVz3EqrpM4SnFFXQK4cVkdGI9QVgHQScXCekIpJRWp3Jqt_YAZrwrJ2gpx66CpwZRQeaUxpfG9xnPHzsXQ-9zuXvame9Wb3b7d2pOaktCnQMgksBQZqKrddV1rGv3cPjyV7ZsmoPvh9TC8tnvqfngNNkOHTGfZ7b1p_5r_D30DZGp79g</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>NAITO, SATOSHI</creator><creator>NOMOTO, FUMIHIKO</creator><creator>SAGAKI, DAISUKE</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190315</creationdate><title>REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T</title><author>NAITO, SATOSHI ; NOMOTO, FUMIHIKO ; SAGAKI, DAISUKE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2310-f36d7e4126c0029c68d92221c1c3d6b576e4c81b6e413d7fd0ea0c4aeeae54f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Topological Groups</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NAITO, SATOSHI</creatorcontrib><creatorcontrib>NOMOTO, FUMIHIKO</creatorcontrib><creatorcontrib>SAGAKI, DAISUKE</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NAITO, SATOSHI</au><au>NOMOTO, FUMIHIKO</au><au>SAGAKI, DAISUKE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2019-03-15</date><risdate>2019</risdate><volume>24</volume><issue>1</issue><spage>155</spage><epage>191</epage><pages>155-191</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>We give a representation-theoretic (or rather, crystal-theoretic) proof of Cherednik-Orr's recursion formula of Demazure type for the specialization at
t
= ∞ of the nonsymmetric Macdonald polynomials
E
w
λ
(
q
,
t
),
w
∈
W
, where λ is a dominant integral weight and
W
is a finite Weyl group.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-017-9467-0</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4362 |
ispartof | Transformation groups, 2019-03, Vol.24 (1), p.155-191 |
issn | 1083-4362 1531-586X |
language | eng |
recordid | cdi_proquest_journals_2185201197 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Lie Groups Mathematics Mathematics and Statistics Polynomials Representations Topological Groups Weight |
title | REPRESENTATION-THEORETIC INTERPRETATION OF CHEREDNIK-ORR’S RECURSION FORMULA FOR THE SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT T |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=REPRESENTATION-THEORETIC%20INTERPRETATION%20OF%20CHEREDNIK-ORR%E2%80%99S%20RECURSION%20FORMULA%20FOR%20THE%20SPECIALIZATION%20OF%20NONSYMMETRIC%20MACDONALD%20POLYNOMIALS%20AT%20T&rft.jtitle=Transformation%20groups&rft.au=NAITO,%20SATOSHI&rft.date=2019-03-15&rft.volume=24&rft.issue=1&rft.spage=155&rft.epage=191&rft.pages=155-191&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-017-9467-0&rft_dat=%3Cproquest_cross%3E2185201197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185201197&rft_id=info:pmid/&rfr_iscdi=true |