Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum

•XPS investigation of a working model cell.•New concept: oxygen partial pressure is controlled by the cell voltage.•Spectroscopic results prove oxygen partial pressure control.•Iron and nickel exsolutions could be tracked in situ.•Surface defect chemistry differs from bulk. Mixed conducting oxides g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2019-02, Vol.680, p.43-51
Hauptverfasser: Nenning, Andreas, Fleig, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 43
container_title Surface science
container_volume 680
creator Nenning, Andreas
Fleig, Jürgen
description •XPS investigation of a working model cell.•New concept: oxygen partial pressure is controlled by the cell voltage.•Spectroscopic results prove oxygen partial pressure control.•Iron and nickel exsolutions could be tracked in situ.•Surface defect chemistry differs from bulk. Mixed conducting oxides gain increasing interest as anode materials in solid oxide fuel cells (SOFCs), due to their large electrochemically active surface area and excellent redox stability, compared to state-of-the-art Ni-Yttria-Stablilzed Zirconia cermets. However, further optimization of these materials requires more information on the surface chemistry and the reaction mechanisms. Here we present a new concept for electrochemical XPS measurements close to SOFC anode operation conditions even in a UHV chamber. Application of a voltage versus an oxygen buffering reference electrode enables control of the effective oxygen partial pressure in the investigated mixed conducting thin film working electrode within the range that is typical for SOFC anodes or SOEC cathodes. A lower limit is given by the reductive decomposition of the working electrode. The virtual absence of molecules in the gas phase of the UHV chamber largely prohibits presence of atmospheric adsorbates. However, surface oxidation states of metal ions can be tuned by the over potential, and exsolution of metallic species can be monitored in situ. With this technique, we investigated the oxygen partial pressure dependent oxidation states of transition metals in La0.6Sr0.4FeO3-δ, SrTi0.3Fe0.7O3-δ and La0.7Sr0.2Cr0.9Ni0.1O3-δ thin film electrodes. When the oxygen partial pressure in the working electrode goes sufficiently below the NiO/Ni and FeO/Fe redox pairs, the exsolution of metallic Ni or Fe nanoparticles could be monitored in-situ. While most oxides are easier to reduce at the surface, Cr on the La0.7Sr0.2Cr0.9Ni0.1O3-δ surface turns out to be more oxidized than the bulk and can include a Cr6+ species. [Display omitted]
doi_str_mv 10.1016/j.susc.2018.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185033233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602818304278</els_id><sourcerecordid>2185033233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-25507a98bfdcd369e12bc2dfda00de187339587b0de4472a70e6daa2cacd6bc03</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMoOKcv4FXA69Y0Wf-JN1I2FQYTpuBdyJLTNaVrZtKO7S18ZFMqeGdukvOd852T80PoNiJhRKLkvg5d72RISZR5ISQkOUOTKEvzgKZxdo4mhLA8SAjNLtGVczXxZ5bHE_Q9b0B21sgKdlqKBn--rbFuD-A6vRWdNi02Jd5B51NwdKbpR63F69WiwDC6FbgHXJjWP5tGt1vcVfCXw-Z42kKL98J22vfZW3Cut-Dn4L7prAgqva2Cg5B9v7tGF6VoHNz83lP0sZi_Fy_BcvX8WjwtA8lS2gU0jkkq8mxTKqlYkkNEN5KqUglCFPjNGcvjLN34YDZLqUgJJEoIKoVUyUYSNkV3Y9-9NV-9X5fXpretH8lplMWEMcqYr6JjlbTGOQsl31u9E_bEI8IH8rzmA3k-kB80T96bHkcT-P8fNFjupIZWgtLWI-HK6P_sPz06kLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185033233</pqid></control><display><type>article</type><title>Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nenning, Andreas ; Fleig, Jürgen</creator><creatorcontrib>Nenning, Andreas ; Fleig, Jürgen</creatorcontrib><description>•XPS investigation of a working model cell.•New concept: oxygen partial pressure is controlled by the cell voltage.•Spectroscopic results prove oxygen partial pressure control.•Iron and nickel exsolutions could be tracked in situ.•Surface defect chemistry differs from bulk. Mixed conducting oxides gain increasing interest as anode materials in solid oxide fuel cells (SOFCs), due to their large electrochemically active surface area and excellent redox stability, compared to state-of-the-art Ni-Yttria-Stablilzed Zirconia cermets. However, further optimization of these materials requires more information on the surface chemistry and the reaction mechanisms. Here we present a new concept for electrochemical XPS measurements close to SOFC anode operation conditions even in a UHV chamber. Application of a voltage versus an oxygen buffering reference electrode enables control of the effective oxygen partial pressure in the investigated mixed conducting thin film working electrode within the range that is typical for SOFC anodes or SOEC cathodes. A lower limit is given by the reductive decomposition of the working electrode. The virtual absence of molecules in the gas phase of the UHV chamber largely prohibits presence of atmospheric adsorbates. However, surface oxidation states of metal ions can be tuned by the over potential, and exsolution of metallic species can be monitored in situ. With this technique, we investigated the oxygen partial pressure dependent oxidation states of transition metals in La0.6Sr0.4FeO3-δ, SrTi0.3Fe0.7O3-δ and La0.7Sr0.2Cr0.9Ni0.1O3-δ thin film electrodes. When the oxygen partial pressure in the working electrode goes sufficiently below the NiO/Ni and FeO/Fe redox pairs, the exsolution of metallic Ni or Fe nanoparticles could be monitored in-situ. While most oxides are easier to reduce at the surface, Cr on the La0.7Sr0.2Cr0.9Ni0.1O3-δ surface turns out to be more oxidized than the bulk and can include a Cr6+ species. [Display omitted]</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2018.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorbates ; Anodes ; Buffers (chemistry) ; Cermets ; Electrode materials ; Electrodes ; Exsolution ; Investigations ; Iron ; Mixed conductor ; Nanoparticles ; Nickel ; Organic chemistry ; Over potential ; Oxidation ; Oxygen ; Partial pressure ; Pressure dependence ; Reaction mechanisms ; Solid oxide fuel cell ; Solid oxide fuel cells ; Surface stability ; Thin film ; Thin films ; Transition metals ; Vapor phases ; XPS ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Surface science, 2019-02, Vol.680, p.43-51</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-25507a98bfdcd369e12bc2dfda00de187339587b0de4472a70e6daa2cacd6bc03</citedby><cites>FETCH-LOGICAL-c372t-25507a98bfdcd369e12bc2dfda00de187339587b0de4472a70e6daa2cacd6bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.susc.2018.10.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nenning, Andreas</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><title>Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum</title><title>Surface science</title><description>•XPS investigation of a working model cell.•New concept: oxygen partial pressure is controlled by the cell voltage.•Spectroscopic results prove oxygen partial pressure control.•Iron and nickel exsolutions could be tracked in situ.•Surface defect chemistry differs from bulk. Mixed conducting oxides gain increasing interest as anode materials in solid oxide fuel cells (SOFCs), due to their large electrochemically active surface area and excellent redox stability, compared to state-of-the-art Ni-Yttria-Stablilzed Zirconia cermets. However, further optimization of these materials requires more information on the surface chemistry and the reaction mechanisms. Here we present a new concept for electrochemical XPS measurements close to SOFC anode operation conditions even in a UHV chamber. Application of a voltage versus an oxygen buffering reference electrode enables control of the effective oxygen partial pressure in the investigated mixed conducting thin film working electrode within the range that is typical for SOFC anodes or SOEC cathodes. A lower limit is given by the reductive decomposition of the working electrode. The virtual absence of molecules in the gas phase of the UHV chamber largely prohibits presence of atmospheric adsorbates. However, surface oxidation states of metal ions can be tuned by the over potential, and exsolution of metallic species can be monitored in situ. With this technique, we investigated the oxygen partial pressure dependent oxidation states of transition metals in La0.6Sr0.4FeO3-δ, SrTi0.3Fe0.7O3-δ and La0.7Sr0.2Cr0.9Ni0.1O3-δ thin film electrodes. When the oxygen partial pressure in the working electrode goes sufficiently below the NiO/Ni and FeO/Fe redox pairs, the exsolution of metallic Ni or Fe nanoparticles could be monitored in-situ. While most oxides are easier to reduce at the surface, Cr on the La0.7Sr0.2Cr0.9Ni0.1O3-δ surface turns out to be more oxidized than the bulk and can include a Cr6+ species. [Display omitted]</description><subject>Adsorbates</subject><subject>Anodes</subject><subject>Buffers (chemistry)</subject><subject>Cermets</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Exsolution</subject><subject>Investigations</subject><subject>Iron</subject><subject>Mixed conductor</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Over potential</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Partial pressure</subject><subject>Pressure dependence</subject><subject>Reaction mechanisms</subject><subject>Solid oxide fuel cell</subject><subject>Solid oxide fuel cells</subject><subject>Surface stability</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Transition metals</subject><subject>Vapor phases</subject><subject>XPS</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kN9KwzAUxoMoOKcv4FXA69Y0Wf-JN1I2FQYTpuBdyJLTNaVrZtKO7S18ZFMqeGdukvOd852T80PoNiJhRKLkvg5d72RISZR5ISQkOUOTKEvzgKZxdo4mhLA8SAjNLtGVczXxZ5bHE_Q9b0B21sgKdlqKBn--rbFuD-A6vRWdNi02Jd5B51NwdKbpR63F69WiwDC6FbgHXJjWP5tGt1vcVfCXw-Z42kKL98J22vfZW3Cut-Dn4L7prAgqva2Cg5B9v7tGF6VoHNz83lP0sZi_Fy_BcvX8WjwtA8lS2gU0jkkq8mxTKqlYkkNEN5KqUglCFPjNGcvjLN34YDZLqUgJJEoIKoVUyUYSNkV3Y9-9NV-9X5fXpretH8lplMWEMcqYr6JjlbTGOQsl31u9E_bEI8IH8rzmA3k-kB80T96bHkcT-P8fNFjupIZWgtLWI-HK6P_sPz06kLQ</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Nenning, Andreas</creator><creator>Fleig, Jürgen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201902</creationdate><title>Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum</title><author>Nenning, Andreas ; Fleig, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-25507a98bfdcd369e12bc2dfda00de187339587b0de4472a70e6daa2cacd6bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbates</topic><topic>Anodes</topic><topic>Buffers (chemistry)</topic><topic>Cermets</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Exsolution</topic><topic>Investigations</topic><topic>Iron</topic><topic>Mixed conductor</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Over potential</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Partial pressure</topic><topic>Pressure dependence</topic><topic>Reaction mechanisms</topic><topic>Solid oxide fuel cell</topic><topic>Solid oxide fuel cells</topic><topic>Surface stability</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Transition metals</topic><topic>Vapor phases</topic><topic>XPS</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nenning, Andreas</creatorcontrib><creatorcontrib>Fleig, Jürgen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nenning, Andreas</au><au>Fleig, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum</atitle><jtitle>Surface science</jtitle><date>2019-02</date><risdate>2019</risdate><volume>680</volume><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>•XPS investigation of a working model cell.•New concept: oxygen partial pressure is controlled by the cell voltage.•Spectroscopic results prove oxygen partial pressure control.•Iron and nickel exsolutions could be tracked in situ.•Surface defect chemistry differs from bulk. Mixed conducting oxides gain increasing interest as anode materials in solid oxide fuel cells (SOFCs), due to their large electrochemically active surface area and excellent redox stability, compared to state-of-the-art Ni-Yttria-Stablilzed Zirconia cermets. However, further optimization of these materials requires more information on the surface chemistry and the reaction mechanisms. Here we present a new concept for electrochemical XPS measurements close to SOFC anode operation conditions even in a UHV chamber. Application of a voltage versus an oxygen buffering reference electrode enables control of the effective oxygen partial pressure in the investigated mixed conducting thin film working electrode within the range that is typical for SOFC anodes or SOEC cathodes. A lower limit is given by the reductive decomposition of the working electrode. The virtual absence of molecules in the gas phase of the UHV chamber largely prohibits presence of atmospheric adsorbates. However, surface oxidation states of metal ions can be tuned by the over potential, and exsolution of metallic species can be monitored in situ. With this technique, we investigated the oxygen partial pressure dependent oxidation states of transition metals in La0.6Sr0.4FeO3-δ, SrTi0.3Fe0.7O3-δ and La0.7Sr0.2Cr0.9Ni0.1O3-δ thin film electrodes. When the oxygen partial pressure in the working electrode goes sufficiently below the NiO/Ni and FeO/Fe redox pairs, the exsolution of metallic Ni or Fe nanoparticles could be monitored in-situ. While most oxides are easier to reduce at the surface, Cr on the La0.7Sr0.2Cr0.9Ni0.1O3-δ surface turns out to be more oxidized than the bulk and can include a Cr6+ species. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2018.10.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2019-02, Vol.680, p.43-51
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_journals_2185033233
source Elsevier ScienceDirect Journals Complete
subjects Adsorbates
Anodes
Buffers (chemistry)
Cermets
Electrode materials
Electrodes
Exsolution
Investigations
Iron
Mixed conductor
Nanoparticles
Nickel
Organic chemistry
Over potential
Oxidation
Oxygen
Partial pressure
Pressure dependence
Reaction mechanisms
Solid oxide fuel cell
Solid oxide fuel cells
Surface stability
Thin film
Thin films
Transition metals
Vapor phases
XPS
Yttrium oxide
Zirconium dioxide
title Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20XPS%20investigation%20of%20metal%20exsolution%20on%20SOFC%20electrodes:%20Controlling%20the%20electrode%20oxygen%20partial%20pressure%20in%20ultra-high-vacuum&rft.jtitle=Surface%20science&rft.au=Nenning,%20Andreas&rft.date=2019-02&rft.volume=680&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2018.10.006&rft_dat=%3Cproquest_cross%3E2185033233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185033233&rft_id=info:pmid/&rft_els_id=S0039602818304278&rfr_iscdi=true