Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms

We analyze approximation rates of deep ReLU neural networks for Sobolev-regular functions with respect to weaker Sobolev norms. First, we construct, based on a calculus of ReLU networks, artificial neural networks with ReLU activation functions that achieve certain approximation rates. Second, we es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Gühring, Ingo, Kutyniok, Gitta, Petersen, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gühring, Ingo
Kutyniok, Gitta
Petersen, Philipp
description We analyze approximation rates of deep ReLU neural networks for Sobolev-regular functions with respect to weaker Sobolev norms. First, we construct, based on a calculus of ReLU networks, artificial neural networks with ReLU activation functions that achieve certain approximation rates. Second, we establish lower bounds for the approximation by ReLU neural networks for classes of Sobolev-regular functions. Our results extend recent advances in the approximation theory of ReLU networks to the regime that is most relevant for applications in the numerical analysis of partial differential equations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2184843106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184843106</sourcerecordid><originalsourceid>FETCH-proquest_journals_21848431063</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIdi0qyi9SSMovzUspVkgDMhMLCoryKzJzE0sy8_OKFcozSzIUUlJTCxSCUn1CFfJSS4sSc4BUSXl-UXaxQmaeQoxGeFx1sU5BbYymQl5-UW4xDwNrWmJOcSovlOZmUHZzDXH20AUaXFiaWlwSn5VfWpQHlIo3MrQwsTAxNjQwMyZOFQAxyz_d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184843106</pqid></control><display><type>article</type><title>Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms</title><source>Free E- Journals</source><creator>Gühring, Ingo ; Kutyniok, Gitta ; Petersen, Philipp</creator><creatorcontrib>Gühring, Ingo ; Kutyniok, Gitta ; Petersen, Philipp</creatorcontrib><description>We analyze approximation rates of deep ReLU neural networks for Sobolev-regular functions with respect to weaker Sobolev norms. First, we construct, based on a calculus of ReLU networks, artificial neural networks with ReLU activation functions that achieve certain approximation rates. Second, we establish lower bounds for the approximation by ReLU neural networks for classes of Sobolev-regular functions. Our results extend recent advances in the approximation theory of ReLU networks to the regime that is most relevant for applications in the numerical analysis of partial differential equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Artificial neural networks ; Lower bounds ; Mathematical analysis ; Neural networks ; Norms ; Numerical analysis ; Partial differential equations</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gühring, Ingo</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Petersen, Philipp</creatorcontrib><title>Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms</title><title>arXiv.org</title><description>We analyze approximation rates of deep ReLU neural networks for Sobolev-regular functions with respect to weaker Sobolev norms. First, we construct, based on a calculus of ReLU networks, artificial neural networks with ReLU activation functions that achieve certain approximation rates. Second, we establish lower bounds for the approximation by ReLU neural networks for classes of Sobolev-regular functions. Our results extend recent advances in the approximation theory of ReLU networks to the regime that is most relevant for applications in the numerical analysis of partial differential equations.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQIdi0qyi9SSMovzUspVkgDMhMLCoryKzJzE0sy8_OKFcozSzIUUlJTCxSCUn1CFfJSS4sSc4BUSXl-UXaxQmaeQoxGeFx1sU5BbYymQl5-UW4xDwNrWmJOcSovlOZmUHZzDXH20AUaXFiaWlwSn5VfWpQHlIo3MrQwsTAxNjQwMyZOFQAxyz_d</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Gühring, Ingo</creator><creator>Kutyniok, Gitta</creator><creator>Petersen, Philipp</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190221</creationdate><title>Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms</title><author>Gühring, Ingo ; Kutyniok, Gitta ; Petersen, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21848431063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Gühring, Ingo</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Petersen, Philipp</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gühring, Ingo</au><au>Kutyniok, Gitta</au><au>Petersen, Philipp</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms</atitle><jtitle>arXiv.org</jtitle><date>2019-02-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We analyze approximation rates of deep ReLU neural networks for Sobolev-regular functions with respect to weaker Sobolev norms. First, we construct, based on a calculus of ReLU networks, artificial neural networks with ReLU activation functions that achieve certain approximation rates. Second, we establish lower bounds for the approximation by ReLU neural networks for classes of Sobolev-regular functions. Our results extend recent advances in the approximation theory of ReLU networks to the regime that is most relevant for applications in the numerical analysis of partial differential equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2184843106
source Free E- Journals
subjects Approximation
Artificial neural networks
Lower bounds
Mathematical analysis
Neural networks
Norms
Numerical analysis
Partial differential equations
title Error bounds for approximations with deep ReLU neural networks in \(W^{s,p}\) norms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Error%20bounds%20for%20approximations%20with%20deep%20ReLU%20neural%20networks%20in%20%5C(W%5E%7Bs,p%7D%5C)%20norms&rft.jtitle=arXiv.org&rft.au=G%C3%BChring,%20Ingo&rft.date=2019-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2184843106%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184843106&rft_id=info:pmid/&rfr_iscdi=true