Structural Organization of Nanocomposite Crystals

A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2019-02, Vol.61 (10), p.1887-1893
Hauptverfasser: Borodin, Yu. V., Ghyngazov, S. A., Klishin, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1893
container_issue 10
container_start_page 1887
container_title Russian physics journal
container_volume 61
creator Borodin, Yu. V.
Ghyngazov, S. A.
Klishin, A. P.
description A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.
doi_str_mv 10.1007/s11182-019-01614-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2184628237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594429241</galeid><sourcerecordid>A594429241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC560zSXaTPZbiPyj2oJ5DSLLLlnZTk-yhfnpTV_AmYZgweb_J4xFyi7BAAHEfEVHSErDJVSMv8YzMsBKsbCiV5_kONS-llOKSXMW4BchYLWYE31IYTRqD3hWb0Omh_9Kp90Ph2-JVD974_cHHPrliFY4x6V28Jhdtbu7mt8_Jx-PD--q5XG-eXlbLdWkYNKk0WGuGApgQrrEcqW0t0-C0ddSCYEJTYFAJXgkrWM2FrVtTZccI8vTE5uRu2nsI_nN0MamtH8OQv1QUJa-ppExk1WJSdXrnVD-0PgVt8rFu3xs_uLbP82XVcE4byjEDdAJM8DEG16pD6Pc6HBWCOmWppixVzlL9ZKlOEJugmMVD58Kfl3-ob_N1dMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184628237</pqid></control><display><type>article</type><title>Structural Organization of Nanocomposite Crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</creator><creatorcontrib>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</creatorcontrib><description>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-019-01614-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer simulation ; Condensed Matter Physics ; Crystal structure ; Crystals ; Design and construction ; Electron microscopy ; Hadrons ; Heavy Ions ; Lasers ; Materials science ; Mathematical and Computational Physics ; Microscopy ; Nanocomposites ; Nanomaterials ; Nanotechnology ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Technology ; Theoretical</subject><ispartof>Russian physics journal, 2019-02, Vol.61 (10), p.1887-1893</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-019-01614-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-019-01614-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Borodin, Yu. V.</creatorcontrib><creatorcontrib>Ghyngazov, S. A.</creatorcontrib><creatorcontrib>Klishin, A. P.</creatorcontrib><title>Structural Organization of Nanocomposite Crystals</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</description><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Design and construction</subject><subject>Electron microscopy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Technology</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC560zSXaTPZbiPyj2oJ5DSLLLlnZTk-yhfnpTV_AmYZgweb_J4xFyi7BAAHEfEVHSErDJVSMv8YzMsBKsbCiV5_kONS-llOKSXMW4BchYLWYE31IYTRqD3hWb0Omh_9Kp90Ph2-JVD974_cHHPrliFY4x6V28Jhdtbu7mt8_Jx-PD--q5XG-eXlbLdWkYNKk0WGuGApgQrrEcqW0t0-C0ddSCYEJTYFAJXgkrWM2FrVtTZccI8vTE5uRu2nsI_nN0MamtH8OQv1QUJa-ppExk1WJSdXrnVD-0PgVt8rFu3xs_uLbP82XVcE4byjEDdAJM8DEG16pD6Pc6HBWCOmWppixVzlL9ZKlOEJugmMVD58Kfl3-ob_N1dMM</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Borodin, Yu. V.</creator><creator>Ghyngazov, S. A.</creator><creator>Klishin, A. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Structural Organization of Nanocomposite Crystals</title><author>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Design and construction</topic><topic>Electron microscopy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Technology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Yu. V.</creatorcontrib><creatorcontrib>Ghyngazov, S. A.</creatorcontrib><creatorcontrib>Klishin, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Yu. V.</au><au>Ghyngazov, S. A.</au><au>Klishin, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Organization of Nanocomposite Crystals</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>61</volume><issue>10</issue><spage>1887</spage><epage>1893</epage><pages>1887-1893</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-019-01614-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2019-02, Vol.61 (10), p.1887-1893
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2184628237
source SpringerLink Journals - AutoHoldings
subjects Computer simulation
Condensed Matter Physics
Crystal structure
Crystals
Design and construction
Electron microscopy
Hadrons
Heavy Ions
Lasers
Materials science
Mathematical and Computational Physics
Microscopy
Nanocomposites
Nanomaterials
Nanotechnology
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Technology
Theoretical
title Structural Organization of Nanocomposite Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Organization%20of%20Nanocomposite%20Crystals&rft.jtitle=Russian%20physics%20journal&rft.au=Borodin,%20Yu.%20V.&rft.date=2019-02-01&rft.volume=61&rft.issue=10&rft.spage=1887&rft.epage=1893&rft.pages=1887-1893&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-019-01614-1&rft_dat=%3Cgale_proqu%3EA594429241%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184628237&rft_id=info:pmid/&rft_galeid=A594429241&rfr_iscdi=true