Structural Organization of Nanocomposite Crystals
A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2019-02, Vol.61 (10), p.1887-1893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1893 |
---|---|
container_issue | 10 |
container_start_page | 1887 |
container_title | Russian physics journal |
container_volume | 61 |
creator | Borodin, Yu. V. Ghyngazov, S. A. Klishin, A. P. |
description | A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated. |
doi_str_mv | 10.1007/s11182-019-01614-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2184628237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594429241</galeid><sourcerecordid>A594429241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC560zSXaTPZbiPyj2oJ5DSLLLlnZTk-yhfnpTV_AmYZgweb_J4xFyi7BAAHEfEVHSErDJVSMv8YzMsBKsbCiV5_kONS-llOKSXMW4BchYLWYE31IYTRqD3hWb0Omh_9Kp90Ph2-JVD974_cHHPrliFY4x6V28Jhdtbu7mt8_Jx-PD--q5XG-eXlbLdWkYNKk0WGuGApgQrrEcqW0t0-C0ddSCYEJTYFAJXgkrWM2FrVtTZccI8vTE5uRu2nsI_nN0MamtH8OQv1QUJa-ppExk1WJSdXrnVD-0PgVt8rFu3xs_uLbP82XVcE4byjEDdAJM8DEG16pD6Pc6HBWCOmWppixVzlL9ZKlOEJugmMVD58Kfl3-ob_N1dMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184628237</pqid></control><display><type>article</type><title>Structural Organization of Nanocomposite Crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</creator><creatorcontrib>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</creatorcontrib><description>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-019-01614-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer simulation ; Condensed Matter Physics ; Crystal structure ; Crystals ; Design and construction ; Electron microscopy ; Hadrons ; Heavy Ions ; Lasers ; Materials science ; Mathematical and Computational Physics ; Microscopy ; Nanocomposites ; Nanomaterials ; Nanotechnology ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Technology ; Theoretical</subject><ispartof>Russian physics journal, 2019-02, Vol.61 (10), p.1887-1893</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-019-01614-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-019-01614-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Borodin, Yu. V.</creatorcontrib><creatorcontrib>Ghyngazov, S. A.</creatorcontrib><creatorcontrib>Klishin, A. P.</creatorcontrib><title>Structural Organization of Nanocomposite Crystals</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</description><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Design and construction</subject><subject>Electron microscopy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Technology</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC560zSXaTPZbiPyj2oJ5DSLLLlnZTk-yhfnpTV_AmYZgweb_J4xFyi7BAAHEfEVHSErDJVSMv8YzMsBKsbCiV5_kONS-llOKSXMW4BchYLWYE31IYTRqD3hWb0Omh_9Kp90Ph2-JVD974_cHHPrliFY4x6V28Jhdtbu7mt8_Jx-PD--q5XG-eXlbLdWkYNKk0WGuGApgQrrEcqW0t0-C0ddSCYEJTYFAJXgkrWM2FrVtTZccI8vTE5uRu2nsI_nN0MamtH8OQv1QUJa-ppExk1WJSdXrnVD-0PgVt8rFu3xs_uLbP82XVcE4byjEDdAJM8DEG16pD6Pc6HBWCOmWppixVzlL9ZKlOEJugmMVD58Kfl3-ob_N1dMM</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Borodin, Yu. V.</creator><creator>Ghyngazov, S. A.</creator><creator>Klishin, A. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Structural Organization of Nanocomposite Crystals</title><author>Borodin, Yu. V. ; Ghyngazov, S. A. ; Klishin, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-c16a3170377e9d412dfd3a0eade2d0737a203057457d73647d6fc5573108a2033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Design and construction</topic><topic>Electron microscopy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Technology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Yu. V.</creatorcontrib><creatorcontrib>Ghyngazov, S. A.</creatorcontrib><creatorcontrib>Klishin, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Yu. V.</au><au>Ghyngazov, S. A.</au><au>Klishin, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Organization of Nanocomposite Crystals</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>61</volume><issue>10</issue><spage>1887</spage><epage>1893</epage><pages>1887-1893</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-019-01614-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2019-02, Vol.61 (10), p.1887-1893 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_2184628237 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer simulation Condensed Matter Physics Crystal structure Crystals Design and construction Electron microscopy Hadrons Heavy Ions Lasers Materials science Mathematical and Computational Physics Microscopy Nanocomposites Nanomaterials Nanotechnology Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Technology Theoretical |
title | Structural Organization of Nanocomposite Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Organization%20of%20Nanocomposite%20Crystals&rft.jtitle=Russian%20physics%20journal&rft.au=Borodin,%20Yu.%20V.&rft.date=2019-02-01&rft.volume=61&rft.issue=10&rft.spage=1887&rft.epage=1893&rft.pages=1887-1893&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-019-01614-1&rft_dat=%3Cgale_proqu%3EA594429241%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184628237&rft_id=info:pmid/&rft_galeid=A594429241&rfr_iscdi=true |