Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints
We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2019-03, Vol.34 (2), p.1139-1150 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 2 |
container_start_page | 1139 |
container_title | IEEE transactions on power systems |
container_volume | 34 |
creator | Liu, Jianfeng Laird, Carl D. Scott, Joseph K. Watson, Jean-Paul Castillo, Anya |
description | We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality. |
doi_str_mv | 10.1109/TPWRS.2018.2876127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184587779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8494758</ieee_id><sourcerecordid>2184587779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo2mSy1F0CkOH29hlaLtTl9k2mmSI_97OjV0dOOd93gMPQreUjCgl-mExW73PR4xQNWJKZpTJMzSgQqiEZFKfowFRSiRKC3KJrkLYEkKy_jBAbtK4smjw3DW7aF2H59EXET4sBFw7j-MG8CvEH-c_k9x1ob_aDtZ42dmIc9e2NrbQRTzzrmygxSsbN3ic44UvutDaEPadJzCGa3RRF02Am-McouXT4yJ_TqZvk5d8PE0qznVMUk0YF6UmXGQVrLNarvsNMA51JkqqqwxkKYsyhbUgvFY1QCGBQVkyWnBS8yG6P_R-efe9gxDN1u181780jKpUKCml7lPskKq8C8FDbb68bQv_aygxe7HmX6zZizVHsT10d4AsAJwAlepUCsX_ADoDd0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184587779</pqid></control><display><type>article</type><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</creator><creatorcontrib>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</creatorcontrib><description>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2876127</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternating current ; Approximation algorithms ; Constraints ; Convergence ; Generators ; Global optimization ; Laboratories ; Mathematical models ; Nonlinear programming ; Optimal power flow ; Optimization ; optimization methods ; Power flow ; power system modeling ; Programming ; Reactive power ; Unit commitment ; Voltage control</subject><ispartof>IEEE transactions on power systems, 2019-03, Vol.34 (2), p.1139-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</citedby><cites>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</cites><orcidid>0000-0003-1518-0721 ; 0000-0003-2614-1007 ; 0000-0003-0016-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8494758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8494758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Laird, Carl D.</creatorcontrib><creatorcontrib>Scott, Joseph K.</creatorcontrib><creatorcontrib>Watson, Jean-Paul</creatorcontrib><creatorcontrib>Castillo, Anya</creatorcontrib><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Approximation algorithms</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Generators</subject><subject>Global optimization</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Optimal power flow</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Power flow</subject><subject>power system modeling</subject><subject>Programming</subject><subject>Reactive power</subject><subject>Unit commitment</subject><subject>Voltage control</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo2mSy1F0CkOH29hlaLtTl9k2mmSI_97OjV0dOOd93gMPQreUjCgl-mExW73PR4xQNWJKZpTJMzSgQqiEZFKfowFRSiRKC3KJrkLYEkKy_jBAbtK4smjw3DW7aF2H59EXET4sBFw7j-MG8CvEH-c_k9x1ob_aDtZ42dmIc9e2NrbQRTzzrmygxSsbN3ic44UvutDaEPadJzCGa3RRF02Am-McouXT4yJ_TqZvk5d8PE0qznVMUk0YF6UmXGQVrLNarvsNMA51JkqqqwxkKYsyhbUgvFY1QCGBQVkyWnBS8yG6P_R-efe9gxDN1u181780jKpUKCml7lPskKq8C8FDbb68bQv_aygxe7HmX6zZizVHsT10d4AsAJwAlepUCsX_ADoDd0c</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Liu, Jianfeng</creator><creator>Laird, Carl D.</creator><creator>Scott, Joseph K.</creator><creator>Watson, Jean-Paul</creator><creator>Castillo, Anya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1518-0721</orcidid><orcidid>https://orcid.org/0000-0003-2614-1007</orcidid><orcidid>https://orcid.org/0000-0003-0016-7452</orcidid></search><sort><creationdate>201903</creationdate><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><author>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Approximation algorithms</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Generators</topic><topic>Global optimization</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Optimal power flow</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Power flow</topic><topic>power system modeling</topic><topic>Programming</topic><topic>Reactive power</topic><topic>Unit commitment</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Laird, Carl D.</creatorcontrib><creatorcontrib>Scott, Joseph K.</creatorcontrib><creatorcontrib>Watson, Jean-Paul</creatorcontrib><creatorcontrib>Castillo, Anya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianfeng</au><au>Laird, Carl D.</au><au>Scott, Joseph K.</au><au>Watson, Jean-Paul</au><au>Castillo, Anya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-03</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>1139</spage><epage>1150</epage><pages>1139-1150</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2876127</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1518-0721</orcidid><orcidid>https://orcid.org/0000-0003-2614-1007</orcidid><orcidid>https://orcid.org/0000-0003-0016-7452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2019-03, Vol.34 (2), p.1139-1150 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_2184587779 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alternating current Approximation algorithms Constraints Convergence Generators Global optimization Laboratories Mathematical models Nonlinear programming Optimal power flow Optimization optimization methods Power flow power system modeling Programming Reactive power Unit commitment Voltage control |
title | Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Solution%20Strategies%20for%20the%20Network-Constrained%20Unit%20Commitment%20Problem%20With%20AC%20Transmission%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Liu,%20Jianfeng&rft.date=2019-03&rft.volume=34&rft.issue=2&rft.spage=1139&rft.epage=1150&rft.pages=1139-1150&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2876127&rft_dat=%3Cproquest_RIE%3E2184587779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184587779&rft_id=info:pmid/&rft_ieee_id=8494758&rfr_iscdi=true |