Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints

We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-03, Vol.34 (2), p.1139-1150
Hauptverfasser: Liu, Jianfeng, Laird, Carl D., Scott, Joseph K., Watson, Jean-Paul, Castillo, Anya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 2
container_start_page 1139
container_title IEEE transactions on power systems
container_volume 34
creator Liu, Jianfeng
Laird, Carl D.
Scott, Joseph K.
Watson, Jean-Paul
Castillo, Anya
description We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.
doi_str_mv 10.1109/TPWRS.2018.2876127
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184587779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8494758</ieee_id><sourcerecordid>2184587779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo2mSy1F0CkOH29hlaLtTl9k2mmSI_97OjV0dOOd93gMPQreUjCgl-mExW73PR4xQNWJKZpTJMzSgQqiEZFKfowFRSiRKC3KJrkLYEkKy_jBAbtK4smjw3DW7aF2H59EXET4sBFw7j-MG8CvEH-c_k9x1ob_aDtZ42dmIc9e2NrbQRTzzrmygxSsbN3ic44UvutDaEPadJzCGa3RRF02Am-McouXT4yJ_TqZvk5d8PE0qznVMUk0YF6UmXGQVrLNarvsNMA51JkqqqwxkKYsyhbUgvFY1QCGBQVkyWnBS8yG6P_R-efe9gxDN1u181780jKpUKCml7lPskKq8C8FDbb68bQv_aygxe7HmX6zZizVHsT10d4AsAJwAlepUCsX_ADoDd0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184587779</pqid></control><display><type>article</type><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</creator><creatorcontrib>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</creatorcontrib><description>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2876127</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternating current ; Approximation algorithms ; Constraints ; Convergence ; Generators ; Global optimization ; Laboratories ; Mathematical models ; Nonlinear programming ; Optimal power flow ; Optimization ; optimization methods ; Power flow ; power system modeling ; Programming ; Reactive power ; Unit commitment ; Voltage control</subject><ispartof>IEEE transactions on power systems, 2019-03, Vol.34 (2), p.1139-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</citedby><cites>FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</cites><orcidid>0000-0003-1518-0721 ; 0000-0003-2614-1007 ; 0000-0003-0016-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8494758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8494758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Laird, Carl D.</creatorcontrib><creatorcontrib>Scott, Joseph K.</creatorcontrib><creatorcontrib>Watson, Jean-Paul</creatorcontrib><creatorcontrib>Castillo, Anya</creatorcontrib><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Approximation algorithms</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Generators</subject><subject>Global optimization</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Optimal power flow</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Power flow</subject><subject>power system modeling</subject><subject>Programming</subject><subject>Reactive power</subject><subject>Unit commitment</subject><subject>Voltage control</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8CXnfmo2mSy1F0CkOH29hlaLtTl9k2mmSI_97OjV0dOOd93gMPQreUjCgl-mExW73PR4xQNWJKZpTJMzSgQqiEZFKfowFRSiRKC3KJrkLYEkKy_jBAbtK4smjw3DW7aF2H59EXET4sBFw7j-MG8CvEH-c_k9x1ob_aDtZ42dmIc9e2NrbQRTzzrmygxSsbN3ic44UvutDaEPadJzCGa3RRF02Am-McouXT4yJ_TqZvk5d8PE0qznVMUk0YF6UmXGQVrLNarvsNMA51JkqqqwxkKYsyhbUgvFY1QCGBQVkyWnBS8yG6P_R-efe9gxDN1u181780jKpUKCml7lPskKq8C8FDbb68bQv_aygxe7HmX6zZizVHsT10d4AsAJwAlepUCsX_ADoDd0c</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Liu, Jianfeng</creator><creator>Laird, Carl D.</creator><creator>Scott, Joseph K.</creator><creator>Watson, Jean-Paul</creator><creator>Castillo, Anya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1518-0721</orcidid><orcidid>https://orcid.org/0000-0003-2614-1007</orcidid><orcidid>https://orcid.org/0000-0003-0016-7452</orcidid></search><sort><creationdate>201903</creationdate><title>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</title><author>Liu, Jianfeng ; Laird, Carl D. ; Scott, Joseph K. ; Watson, Jean-Paul ; Castillo, Anya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-490235b90356ced6f7d902e23ef65b19c6e7b7ab4ed503f8feea7e2ebb21a30f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Approximation algorithms</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Generators</topic><topic>Global optimization</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Optimal power flow</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Power flow</topic><topic>power system modeling</topic><topic>Programming</topic><topic>Reactive power</topic><topic>Unit commitment</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Laird, Carl D.</creatorcontrib><creatorcontrib>Scott, Joseph K.</creatorcontrib><creatorcontrib>Watson, Jean-Paul</creatorcontrib><creatorcontrib>Castillo, Anya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianfeng</au><au>Laird, Carl D.</au><au>Scott, Joseph K.</au><au>Watson, Jean-Paul</au><au>Castillo, Anya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-03</date><risdate>2019</risdate><volume>34</volume><issue>2</issue><spage>1139</spage><epage>1150</epage><pages>1139-1150</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current (ac) model of the transmission network, which is a nonconvex mixed-integer nonlinear programming problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. We exploit the mathematical structure of the unit commitment problem with ac power flow constraints and leverage second-order cone relaxations, piecewise outer approximations, and optimization-based bounds tightening to provide a globally optimal solution at convergence. Numerical results on four benchmark problems illustrate the effectiveness of our algorithm, both in terms of convergence rate and solution quality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2876127</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1518-0721</orcidid><orcidid>https://orcid.org/0000-0003-2614-1007</orcidid><orcidid>https://orcid.org/0000-0003-0016-7452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-03, Vol.34 (2), p.1139-1150
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2184587779
source IEEE Electronic Library (IEL)
subjects Algorithms
Alternating current
Approximation algorithms
Constraints
Convergence
Generators
Global optimization
Laboratories
Mathematical models
Nonlinear programming
Optimal power flow
Optimization
optimization methods
Power flow
power system modeling
Programming
Reactive power
Unit commitment
Voltage control
title Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Solution%20Strategies%20for%20the%20Network-Constrained%20Unit%20Commitment%20Problem%20With%20AC%20Transmission%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Liu,%20Jianfeng&rft.date=2019-03&rft.volume=34&rft.issue=2&rft.spage=1139&rft.epage=1150&rft.pages=1139-1150&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2876127&rft_dat=%3Cproquest_RIE%3E2184587779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184587779&rft_id=info:pmid/&rft_ieee_id=8494758&rfr_iscdi=true