Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands
Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design pr...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2019-02, Vol.24 (1), p.120-131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 24 |
creator | Zhang, Hongying Kumar, A. Senthil Chen, Feifei Fuh, Jerry Y. H. Wang, Michael Yu |
description | Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots. |
doi_str_mv | 10.1109/TMECH.2018.2874067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184587268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8481523</ieee_id><sourcerecordid>2184587268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</originalsourceid><addsrcrecordid>eNo9UMtKAzEUHUTBWv0B3QTcdmpukplJl6X0IbQUtIK7ITOT1JRxEpN0Ub_e9IGrey7ncbknSR4BDwHw6GWzmk4WQ4KBDwkvGM6Lq6QHIwYpBvZ5HTHmNGWMZrfJnfc7jDEDDL3Ebow1rdke0NoG_a1_ZYNW-zZCEaTTokXvRgU0091WOo-UcWhsbatrEbTpPDIdmjttbSQH6E1-iUq3OpzIARJdg8YuaKXrY9Ii7v4-uVGi9fLhMvvJx2y6mSzS5Xr-Ohkv05rmEFIluOKKNHWTq0oVsuJ5zQWJr8kRsBHNmkKQvC4yVqhMiZwpoMBYhYFQxlVB-8nzOdc687OXPpQ7s3ddPFkS4CzjBcl5VJGzqnbGeydVaV183R1KwOWx2fLUbHlstrw0G01PZ5OWUv4bOOOQEUr_ABMZdjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184587268</pqid></control><display><type>article</type><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</creator><creatorcontrib>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</creatorcontrib><description>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2874067</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Automation ; Fingers ; Grippers ; Hand (anatomy) ; Multimaterial soft robot ; Optimization ; Payloads ; Rehabilitation ; Robots ; soft gripper ; Soft robotics ; Sunglasses ; Three dimensional printing ; three-dimensional (3-D) printing ; Thumb ; Topology ; Topology optimization</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-02, Vol.24 (1), p.120-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</citedby><cites>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</cites><orcidid>0000-0002-6524-5741 ; 0000-0003-2948-3133 ; 0000-0001-6733-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8481523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8481523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Kumar, A. Senthil</creatorcontrib><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Fuh, Jerry Y. H.</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</description><subject>Actuators</subject><subject>Automation</subject><subject>Fingers</subject><subject>Grippers</subject><subject>Hand (anatomy)</subject><subject>Multimaterial soft robot</subject><subject>Optimization</subject><subject>Payloads</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>soft gripper</subject><subject>Soft robotics</subject><subject>Sunglasses</subject><subject>Three dimensional printing</subject><subject>three-dimensional (3-D) printing</subject><subject>Thumb</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtKAzEUHUTBWv0B3QTcdmpukplJl6X0IbQUtIK7ITOT1JRxEpN0Ub_e9IGrey7ncbknSR4BDwHw6GWzmk4WQ4KBDwkvGM6Lq6QHIwYpBvZ5HTHmNGWMZrfJnfc7jDEDDL3Ebow1rdke0NoG_a1_ZYNW-zZCEaTTokXvRgU0091WOo-UcWhsbatrEbTpPDIdmjttbSQH6E1-iUq3OpzIARJdg8YuaKXrY9Ii7v4-uVGi9fLhMvvJx2y6mSzS5Xr-Ohkv05rmEFIluOKKNHWTq0oVsuJ5zQWJr8kRsBHNmkKQvC4yVqhMiZwpoMBYhYFQxlVB-8nzOdc687OXPpQ7s3ddPFkS4CzjBcl5VJGzqnbGeydVaV183R1KwOWx2fLUbHlstrw0G01PZ5OWUv4bOOOQEUr_ABMZdjM</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Hongying</creator><creator>Kumar, A. Senthil</creator><creator>Chen, Feifei</creator><creator>Fuh, Jerry Y. H.</creator><creator>Wang, Michael Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6524-5741</orcidid><orcidid>https://orcid.org/0000-0003-2948-3133</orcidid><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid></search><sort><creationdate>20190201</creationdate><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><author>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Automation</topic><topic>Fingers</topic><topic>Grippers</topic><topic>Hand (anatomy)</topic><topic>Multimaterial soft robot</topic><topic>Optimization</topic><topic>Payloads</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>soft gripper</topic><topic>Soft robotics</topic><topic>Sunglasses</topic><topic>Three dimensional printing</topic><topic>three-dimensional (3-D) printing</topic><topic>Thumb</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Kumar, A. Senthil</creatorcontrib><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Fuh, Jerry Y. H.</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hongying</au><au>Kumar, A. Senthil</au><au>Chen, Feifei</au><au>Fuh, Jerry Y. H.</au><au>Wang, Michael Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>24</volume><issue>1</issue><spage>120</spage><epage>131</epage><pages>120-131</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2874067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6524-5741</orcidid><orcidid>https://orcid.org/0000-0003-2948-3133</orcidid><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2019-02, Vol.24 (1), p.120-131 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2184587268 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Automation Fingers Grippers Hand (anatomy) Multimaterial soft robot Optimization Payloads Rehabilitation Robots soft gripper Soft robotics Sunglasses Three dimensional printing three-dimensional (3-D) printing Thumb Topology Topology optimization |
title | Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Optimized%20Multimaterial%20Soft%20Fingers%20for%20Applications%20on%20Grippers,%20Rehabilitation,%20and%20Artificial%20Hands&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhang,%20Hongying&rft.date=2019-02-01&rft.volume=24&rft.issue=1&rft.spage=120&rft.epage=131&rft.pages=120-131&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2874067&rft_dat=%3Cproquest_RIE%3E2184587268%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184587268&rft_id=info:pmid/&rft_ieee_id=8481523&rfr_iscdi=true |