Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands

Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2019-02, Vol.24 (1), p.120-131
Hauptverfasser: Zhang, Hongying, Kumar, A. Senthil, Chen, Feifei, Fuh, Jerry Y. H., Wang, Michael Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 120
container_title IEEE/ASME transactions on mechatronics
container_volume 24
creator Zhang, Hongying
Kumar, A. Senthil
Chen, Feifei
Fuh, Jerry Y. H.
Wang, Michael Yu
description Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.
doi_str_mv 10.1109/TMECH.2018.2874067
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184587268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8481523</ieee_id><sourcerecordid>2184587268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</originalsourceid><addsrcrecordid>eNo9UMtKAzEUHUTBWv0B3QTcdmpukplJl6X0IbQUtIK7ITOT1JRxEpN0Ub_e9IGrey7ncbknSR4BDwHw6GWzmk4WQ4KBDwkvGM6Lq6QHIwYpBvZ5HTHmNGWMZrfJnfc7jDEDDL3Ebow1rdke0NoG_a1_ZYNW-zZCEaTTokXvRgU0091WOo-UcWhsbatrEbTpPDIdmjttbSQH6E1-iUq3OpzIARJdg8YuaKXrY9Ii7v4-uVGi9fLhMvvJx2y6mSzS5Xr-Ohkv05rmEFIluOKKNHWTq0oVsuJ5zQWJr8kRsBHNmkKQvC4yVqhMiZwpoMBYhYFQxlVB-8nzOdc687OXPpQ7s3ddPFkS4CzjBcl5VJGzqnbGeydVaV183R1KwOWx2fLUbHlstrw0G01PZ5OWUv4bOOOQEUr_ABMZdjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184587268</pqid></control><display><type>article</type><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</creator><creatorcontrib>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</creatorcontrib><description>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2018.2874067</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Automation ; Fingers ; Grippers ; Hand (anatomy) ; Multimaterial soft robot ; Optimization ; Payloads ; Rehabilitation ; Robots ; soft gripper ; Soft robotics ; Sunglasses ; Three dimensional printing ; three-dimensional (3-D) printing ; Thumb ; Topology ; Topology optimization</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-02, Vol.24 (1), p.120-131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</citedby><cites>FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</cites><orcidid>0000-0002-6524-5741 ; 0000-0003-2948-3133 ; 0000-0001-6733-1259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8481523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8481523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Kumar, A. Senthil</creatorcontrib><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Fuh, Jerry Y. H.</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</description><subject>Actuators</subject><subject>Automation</subject><subject>Fingers</subject><subject>Grippers</subject><subject>Hand (anatomy)</subject><subject>Multimaterial soft robot</subject><subject>Optimization</subject><subject>Payloads</subject><subject>Rehabilitation</subject><subject>Robots</subject><subject>soft gripper</subject><subject>Soft robotics</subject><subject>Sunglasses</subject><subject>Three dimensional printing</subject><subject>three-dimensional (3-D) printing</subject><subject>Thumb</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtKAzEUHUTBWv0B3QTcdmpukplJl6X0IbQUtIK7ITOT1JRxEpN0Ub_e9IGrey7ncbknSR4BDwHw6GWzmk4WQ4KBDwkvGM6Lq6QHIwYpBvZ5HTHmNGWMZrfJnfc7jDEDDL3Ebow1rdke0NoG_a1_ZYNW-zZCEaTTokXvRgU0091WOo-UcWhsbatrEbTpPDIdmjttbSQH6E1-iUq3OpzIARJdg8YuaKXrY9Ii7v4-uVGi9fLhMvvJx2y6mSzS5Xr-Ohkv05rmEFIluOKKNHWTq0oVsuJ5zQWJr8kRsBHNmkKQvC4yVqhMiZwpoMBYhYFQxlVB-8nzOdc687OXPpQ7s3ddPFkS4CzjBcl5VJGzqnbGeydVaV183R1KwOWx2fLUbHlstrw0G01PZ5OWUv4bOOOQEUr_ABMZdjM</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Hongying</creator><creator>Kumar, A. Senthil</creator><creator>Chen, Feifei</creator><creator>Fuh, Jerry Y. H.</creator><creator>Wang, Michael Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6524-5741</orcidid><orcidid>https://orcid.org/0000-0003-2948-3133</orcidid><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid></search><sort><creationdate>20190201</creationdate><title>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</title><author>Zhang, Hongying ; Kumar, A. Senthil ; Chen, Feifei ; Fuh, Jerry Y. H. ; Wang, Michael Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fa8f8f2dcd6fbf7eb86c8a2740e914935d7a26c7547f5fa64f13144b012348f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Automation</topic><topic>Fingers</topic><topic>Grippers</topic><topic>Hand (anatomy)</topic><topic>Multimaterial soft robot</topic><topic>Optimization</topic><topic>Payloads</topic><topic>Rehabilitation</topic><topic>Robots</topic><topic>soft gripper</topic><topic>Soft robotics</topic><topic>Sunglasses</topic><topic>Three dimensional printing</topic><topic>three-dimensional (3-D) printing</topic><topic>Thumb</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Kumar, A. Senthil</creatorcontrib><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Fuh, Jerry Y. H.</creatorcontrib><creatorcontrib>Wang, Michael Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Hongying</au><au>Kumar, A. Senthil</au><au>Chen, Feifei</au><au>Fuh, Jerry Y. H.</au><au>Wang, Michael Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>24</volume><issue>1</issue><spage>120</spage><epage>131</epage><pages>120-131</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Multimaterial soft robots, composing of integrated soft actuators and a relatively harder body, show great potential to exert higher payloads and support their own weights. This paper proposed a systemic framework to automatically design and fabricate this kind of robots. The multimaterial design problem is mathematically modeled under the framework of topology optimization in which the structure and material distribution are obtained simultaneously. Herein, a multimaterial pneumatic soft finger, modeled as a compliant mechanism, is optimized to achieve its maximal bending deflection and further customized to practical applications on grippers, rehabilitation, and an artificial hand. These optimized multimaterial soft fingers are fabricated by combining molding and three-dimensional printing technique. Experimental results show that the soft gripper can manipulate a large variety of objects with different shapes (from M4 screws to complicated sunglasses) and weights (up to 168 g), the rehabilitation finger can facilitate human safely in two modes, and the artificial hand can perform various gestures. This paper represents an important step toward the realm of high-performance soft robots.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2018.2874067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6524-5741</orcidid><orcidid>https://orcid.org/0000-0003-2948-3133</orcidid><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2019-02, Vol.24 (1), p.120-131
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2184587268
source IEEE Electronic Library (IEL)
subjects Actuators
Automation
Fingers
Grippers
Hand (anatomy)
Multimaterial soft robot
Optimization
Payloads
Rehabilitation
Robots
soft gripper
Soft robotics
Sunglasses
Three dimensional printing
three-dimensional (3-D) printing
Thumb
Topology
Topology optimization
title Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Optimized%20Multimaterial%20Soft%20Fingers%20for%20Applications%20on%20Grippers,%20Rehabilitation,%20and%20Artificial%20Hands&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhang,%20Hongying&rft.date=2019-02-01&rft.volume=24&rft.issue=1&rft.spage=120&rft.epage=131&rft.pages=120-131&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2018.2874067&rft_dat=%3Cproquest_RIE%3E2184587268%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184587268&rft_id=info:pmid/&rft_ieee_id=8481523&rfr_iscdi=true