An Efficient Nondominated Sorting Algorithm for Large Number of Fronts
Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is {O(MN^{2})} , where {N} is the number of solutions and {M} is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2019-03, Vol.49 (3), p.859-869 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 3 |
container_start_page | 859 |
container_title | IEEE transactions on cybernetics |
container_volume | 49 |
creator | Roy, Proteek Chandan Deb, Kalyanmoy Islam, Md. Monirul |
description | Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is {O(MN^{2})} , where {N} is the number of solutions and {M} is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to {\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) , where the number of fronts is {F} and the maximum number of solutions per front is {C}_{\mathrm {max}} ; however, in general cases, our worst case complexity is still {O(MN^{2})} . Our best case time complexity is {O}({MN}\mathrm {log} {N}) . We also achieve the best case complexity {O}({MN}\mathrm {log} {N+N^{2}}) , when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms. |
doi_str_mv | 10.1109/TCYB.2017.2789158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184578750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8255834</ieee_id><sourcerecordid>2068338942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKuoPEEECXry0ZpLdfBxrsSoUPagHTyG7ndSV7kaT3YP_3pTWHsxlwszzDsNDyDmwMQAzN6_T99sxZ6DGXGkDpd4jxxykHnGuyv3dX6ojcpbSJ8tP55bRh-SIG2MKIdkxmU06eud9UzfY9fQpdIvQNp3rcUFfQuybbkknq2WITf_RUh8inbu4RPo0tBVGGjydxdD16ZQceLdKeLatJ-Rtdvc6fRjNn-8fp5P5qBaG9yMtkRnQdSW8xwq0NzJf7p2onVeyKEoABFUbXzola_QKNFSsEODkokStxAm53uz9iuF7wNTbtkk1rlauwzAky5nUQmhT8Ixe_UM_wxC7fJ3loItSaVWyTMGGqmNIKaK3X7FpXfyxwOzas117tmvPdus5Zy63m4eqxcUu8Wc1AxcboEHE3VjzMocL8QtkhX90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184578750</pqid></control><display><type>article</type><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</creator><creatorcontrib>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</creatorcontrib><description><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2789158</identifier><identifier>PMID: 29994360</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Best case complexity ; bounded best order sort (BBOS) ; Classification ; Complexity ; Cybernetics ; Evolutionary algorithms ; layers of maxima ; many-objective optimization ; Multiple objective analysis ; nondominated sorting ; Objectives ; Optimization ; Pareto ranking ; Sociology ; Sorting ; Sorting algorithms ; State of the art ; Statistics ; Time complexity ; worst case complexity</subject><ispartof>IEEE transactions on cybernetics, 2019-03, Vol.49 (3), p.859-869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</citedby><cites>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</cites><orcidid>0000-0001-7402-9939 ; 0000-0002-8998-2850 ; 0000-0002-1646-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8255834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8255834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Proteek Chandan</creatorcontrib><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Islam, Md. Monirul</creatorcontrib><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></description><subject>Algorithms</subject><subject>Best case complexity</subject><subject>bounded best order sort (BBOS)</subject><subject>Classification</subject><subject>Complexity</subject><subject>Cybernetics</subject><subject>Evolutionary algorithms</subject><subject>layers of maxima</subject><subject>many-objective optimization</subject><subject>Multiple objective analysis</subject><subject>nondominated sorting</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Pareto ranking</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>State of the art</subject><subject>Statistics</subject><subject>Time complexity</subject><subject>worst case complexity</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKuoPEEECXry0ZpLdfBxrsSoUPagHTyG7ndSV7kaT3YP_3pTWHsxlwszzDsNDyDmwMQAzN6_T99sxZ6DGXGkDpd4jxxykHnGuyv3dX6ojcpbSJ8tP55bRh-SIG2MKIdkxmU06eud9UzfY9fQpdIvQNp3rcUFfQuybbkknq2WITf_RUh8inbu4RPo0tBVGGjydxdD16ZQceLdKeLatJ-Rtdvc6fRjNn-8fp5P5qBaG9yMtkRnQdSW8xwq0NzJf7p2onVeyKEoABFUbXzola_QKNFSsEODkokStxAm53uz9iuF7wNTbtkk1rlauwzAky5nUQmhT8Ixe_UM_wxC7fJ3loItSaVWyTMGGqmNIKaK3X7FpXfyxwOzas117tmvPdus5Zy63m4eqxcUu8Wc1AxcboEHE3VjzMocL8QtkhX90</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Roy, Proteek Chandan</creator><creator>Deb, Kalyanmoy</creator><creator>Islam, Md. Monirul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7402-9939</orcidid><orcidid>https://orcid.org/0000-0002-8998-2850</orcidid><orcidid>https://orcid.org/0000-0002-1646-9239</orcidid></search><sort><creationdate>20190301</creationdate><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><author>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Best case complexity</topic><topic>bounded best order sort (BBOS)</topic><topic>Classification</topic><topic>Complexity</topic><topic>Cybernetics</topic><topic>Evolutionary algorithms</topic><topic>layers of maxima</topic><topic>many-objective optimization</topic><topic>Multiple objective analysis</topic><topic>nondominated sorting</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Pareto ranking</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>State of the art</topic><topic>Statistics</topic><topic>Time complexity</topic><topic>worst case complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Proteek Chandan</creatorcontrib><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Islam, Md. Monirul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Proteek Chandan</au><au>Deb, Kalyanmoy</au><au>Islam, Md. Monirul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>49</volume><issue>3</issue><spage>859</spage><epage>869</epage><pages>859-869</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994360</pmid><doi>10.1109/TCYB.2017.2789158</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7402-9939</orcidid><orcidid>https://orcid.org/0000-0002-8998-2850</orcidid><orcidid>https://orcid.org/0000-0002-1646-9239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2019-03, Vol.49 (3), p.859-869 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2184578750 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Best case complexity bounded best order sort (BBOS) Classification Complexity Cybernetics Evolutionary algorithms layers of maxima many-objective optimization Multiple objective analysis nondominated sorting Objectives Optimization Pareto ranking Sociology Sorting Sorting algorithms State of the art Statistics Time complexity worst case complexity |
title | An Efficient Nondominated Sorting Algorithm for Large Number of Fronts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Nondominated%20Sorting%20Algorithm%20for%20Large%20Number%20of%20Fronts&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Roy,%20Proteek%20Chandan&rft.date=2019-03-01&rft.volume=49&rft.issue=3&rft.spage=859&rft.epage=869&rft.pages=859-869&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2789158&rft_dat=%3Cproquest_RIE%3E2068338942%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184578750&rft_id=info:pmid/29994360&rft_ieee_id=8255834&rfr_iscdi=true |