An Efficient Nondominated Sorting Algorithm for Large Number of Fronts

Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is {O(MN^{2})} , where {N} is the number of solutions and {M} is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2019-03, Vol.49 (3), p.859-869
Hauptverfasser: Roy, Proteek Chandan, Deb, Kalyanmoy, Islam, Md. Monirul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 3
container_start_page 859
container_title IEEE transactions on cybernetics
container_volume 49
creator Roy, Proteek Chandan
Deb, Kalyanmoy
Islam, Md. Monirul
description Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is {O(MN^{2})} , where {N} is the number of solutions and {M} is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to {\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) , where the number of fronts is {F} and the maximum number of solutions per front is {C}_{\mathrm {max}} ; however, in general cases, our worst case complexity is still {O(MN^{2})} . Our best case time complexity is {O}({MN}\mathrm {log} {N}) . We also achieve the best case complexity {O}({MN}\mathrm {log} {N+N^{2}}) , when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.
doi_str_mv 10.1109/TCYB.2017.2789158
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2184578750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8255834</ieee_id><sourcerecordid>2068338942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKuoPEEECXry0ZpLdfBxrsSoUPagHTyG7ndSV7kaT3YP_3pTWHsxlwszzDsNDyDmwMQAzN6_T99sxZ6DGXGkDpd4jxxykHnGuyv3dX6ojcpbSJ8tP55bRh-SIG2MKIdkxmU06eud9UzfY9fQpdIvQNp3rcUFfQuybbkknq2WITf_RUh8inbu4RPo0tBVGGjydxdD16ZQceLdKeLatJ-Rtdvc6fRjNn-8fp5P5qBaG9yMtkRnQdSW8xwq0NzJf7p2onVeyKEoABFUbXzola_QKNFSsEODkokStxAm53uz9iuF7wNTbtkk1rlauwzAky5nUQmhT8Ixe_UM_wxC7fJ3loItSaVWyTMGGqmNIKaK3X7FpXfyxwOzas117tmvPdus5Zy63m4eqxcUu8Wc1AxcboEHE3VjzMocL8QtkhX90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184578750</pqid></control><display><type>article</type><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</creator><creatorcontrib>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</creatorcontrib><description><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2789158</identifier><identifier>PMID: 29994360</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Best case complexity ; bounded best order sort (BBOS) ; Classification ; Complexity ; Cybernetics ; Evolutionary algorithms ; layers of maxima ; many-objective optimization ; Multiple objective analysis ; nondominated sorting ; Objectives ; Optimization ; Pareto ranking ; Sociology ; Sorting ; Sorting algorithms ; State of the art ; Statistics ; Time complexity ; worst case complexity</subject><ispartof>IEEE transactions on cybernetics, 2019-03, Vol.49 (3), p.859-869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</citedby><cites>FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</cites><orcidid>0000-0001-7402-9939 ; 0000-0002-8998-2850 ; 0000-0002-1646-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8255834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8255834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Proteek Chandan</creatorcontrib><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Islam, Md. Monirul</creatorcontrib><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></description><subject>Algorithms</subject><subject>Best case complexity</subject><subject>bounded best order sort (BBOS)</subject><subject>Classification</subject><subject>Complexity</subject><subject>Cybernetics</subject><subject>Evolutionary algorithms</subject><subject>layers of maxima</subject><subject>many-objective optimization</subject><subject>Multiple objective analysis</subject><subject>nondominated sorting</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Pareto ranking</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>State of the art</subject><subject>Statistics</subject><subject>Time complexity</subject><subject>worst case complexity</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoKuoPEEECXry0ZpLdfBxrsSoUPagHTyG7ndSV7kaT3YP_3pTWHsxlwszzDsNDyDmwMQAzN6_T99sxZ6DGXGkDpd4jxxykHnGuyv3dX6ojcpbSJ8tP55bRh-SIG2MKIdkxmU06eud9UzfY9fQpdIvQNp3rcUFfQuybbkknq2WITf_RUh8inbu4RPo0tBVGGjydxdD16ZQceLdKeLatJ-Rtdvc6fRjNn-8fp5P5qBaG9yMtkRnQdSW8xwq0NzJf7p2onVeyKEoABFUbXzola_QKNFSsEODkokStxAm53uz9iuF7wNTbtkk1rlauwzAky5nUQmhT8Ixe_UM_wxC7fJ3loItSaVWyTMGGqmNIKaK3X7FpXfyxwOzas117tmvPdus5Zy63m4eqxcUu8Wc1AxcboEHE3VjzMocL8QtkhX90</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Roy, Proteek Chandan</creator><creator>Deb, Kalyanmoy</creator><creator>Islam, Md. Monirul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7402-9939</orcidid><orcidid>https://orcid.org/0000-0002-8998-2850</orcidid><orcidid>https://orcid.org/0000-0002-1646-9239</orcidid></search><sort><creationdate>20190301</creationdate><title>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</title><author>Roy, Proteek Chandan ; Deb, Kalyanmoy ; Islam, Md. Monirul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-86e0918cb3ffeb18f96915fa3caf7644511e17c9f5a76cef7181b0431a6d5e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Best case complexity</topic><topic>bounded best order sort (BBOS)</topic><topic>Classification</topic><topic>Complexity</topic><topic>Cybernetics</topic><topic>Evolutionary algorithms</topic><topic>layers of maxima</topic><topic>many-objective optimization</topic><topic>Multiple objective analysis</topic><topic>nondominated sorting</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Pareto ranking</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>State of the art</topic><topic>Statistics</topic><topic>Time complexity</topic><topic>worst case complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Proteek Chandan</creatorcontrib><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Islam, Md. Monirul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Proteek Chandan</au><au>Deb, Kalyanmoy</au><au>Islam, Md. Monirul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Nondominated Sorting Algorithm for Large Number of Fronts</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>49</volume><issue>3</issue><spage>859</spage><epage>869</epage><pages>859-869</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[Nondominated sorting is a key operation used in multiobjective evolutionary algorithms (MOEA). Worst case time complexity of this algorithm is <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> is the number of solutions and <inline-formula> <tex-math notation="LaTeX">{M} </tex-math></inline-formula> is the number of objectives. For stochastic algorithms like MOEAs, it is important to devise an algorithm which has better average case performance. In this paper, we propose a new algorithm that makes use of faster scalar sorting algorithm to perform nondominated sorting. It finds partial orders of each solution from all objectives and use these orders to skip unnecessary solution comparisons. We also propose a specific order of objectives that reduces objective comparisons. The proposed method introduces a weighted binary search over the fronts when the rank of a solution is determined. It further reduces total computational effort by a large factor when there is large number of fronts. We prove that the worst case complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">{\Theta }({MNC}_{{max}}\mathrm {log}_{{2}} {(F+1)}) </tex-math></inline-formula>, where the number of fronts is <inline-formula> <tex-math notation="LaTeX">{F} </tex-math></inline-formula> and the maximum number of solutions per front is <inline-formula> <tex-math notation="LaTeX">{C}_{\mathrm {max}} </tex-math></inline-formula>; however, in general cases, our worst case complexity is still <inline-formula> <tex-math notation="LaTeX">{O(MN^{2})} </tex-math></inline-formula>. Our best case time complexity is <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N}) </tex-math></inline-formula>. We also achieve the best case complexity <inline-formula> <tex-math notation="LaTeX">{O}({MN}\mathrm {log} {N+N^{2}}) </tex-math></inline-formula>, when all solutions are in a single front. This method is compared with other state-of-the-art algorithms-efficient nondomination level update, deductive sort, corner sort, efficient nondominated sort and divide-and-conquer sort-in four different datasets. Experimental results show that our method, namely, bounded best order sort, is computationally more efficient than all other competing algorithms.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994360</pmid><doi>10.1109/TCYB.2017.2789158</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7402-9939</orcidid><orcidid>https://orcid.org/0000-0002-8998-2850</orcidid><orcidid>https://orcid.org/0000-0002-1646-9239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2019-03, Vol.49 (3), p.859-869
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2184578750
source IEEE Electronic Library (IEL)
subjects Algorithms
Best case complexity
bounded best order sort (BBOS)
Classification
Complexity
Cybernetics
Evolutionary algorithms
layers of maxima
many-objective optimization
Multiple objective analysis
nondominated sorting
Objectives
Optimization
Pareto ranking
Sociology
Sorting
Sorting algorithms
State of the art
Statistics
Time complexity
worst case complexity
title An Efficient Nondominated Sorting Algorithm for Large Number of Fronts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Nondominated%20Sorting%20Algorithm%20for%20Large%20Number%20of%20Fronts&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Roy,%20Proteek%20Chandan&rft.date=2019-03-01&rft.volume=49&rft.issue=3&rft.spage=859&rft.epage=869&rft.pages=859-869&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2789158&rft_dat=%3Cproquest_RIE%3E2068338942%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184578750&rft_id=info:pmid/29994360&rft_ieee_id=8255834&rfr_iscdi=true