Lattice Boltzmann simulation of free convection’s hydrothermal aspects in a finned/multi-pipe cavity filled with CuO-water nanofluid

Purpose This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity. Design/methodology/approach The cavity is filled with the CuO-water nanofluid. The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider Brownian motio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2019-03, Vol.29 (3), p.1058-1078
Hauptverfasser: Rahimi, Alireza, Azarikhah, Pouria, Kasaeipoor, Abbas, Hasani Malekshah, Emad, Kolsi, Lioua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity. Design/methodology/approach The cavity is filled with the CuO-water nanofluid. The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider Brownian motion. On the other hand, the effect of the shapes of nanoparticles on the thermal conductivity and related heat transfer rate is presented. Findings In the present investigation, the governing parameters are Rayleigh number, CuO nanoparticle concentration in pure water and the thermal arrangements of internal active fins and solid bodies. Impacts of these parameters on the nanofluid flow, heat transfer rate, total/local entropy generation and heatlines are presented. It is concluded that adding nanoparticles to the pure fluid has a significant positive influence on the heat transfer performance. In addition, the average Nusselt number and total entropy generation have direct a relationship with the Rayleigh number. The thermal arrangement of the internal bodies and fins is a good controlling tool to determine the desired magnitude of heat transfer rate. Originality/value The originality of this paper is to use the lattice Boltzmann method in simulating the nanofluid flow and heat transfer within a cavity included with internal active bodies and fins.
ISSN:0961-5539
1758-6585
DOI:10.1108/HFF-07-2018-0349