Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam
This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscop...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2019-05, Vol.267, p.80-89 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | Journal of materials processing technology |
container_volume | 267 |
creator | Kang, Eun Goo Choi, Hon Zong Min, Byung-Kwon Lee, Sang Jo |
description | This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment. |
doi_str_mv | 10.1016/j.jmatprotec.2018.08.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184432941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618303686</els_id><sourcerecordid>2184432941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</originalsourceid><addsrcrecordid>eNqFUE2rFDEQDKLg-vQ_BDzPmmQymcxRn5_4wIO-c-gkHV-GnWRMsoJn_7hZVvAoNHTTVFV3FSGUsyNnXL1aj-sGbS-5oTsKxvWR9RLqETlwPY-DnGf5mBzYIuTA-Kiekme1rozxmWl9IL_vT61AzSk6GrcdXKOtILQNU6OQPHW5lFxjTrRh7avQsND2gBTOtWGKDen-ABU7DVINufRvLugc6NfPbzmn5xrTdwp0P0HdgPqYPVI8oWulwyzC9pw8CXCq-OJvvyH37999u_043H358On29d3gxMLbIJQHq-eJTVIHZ5WCZZo6P0zj5IVSYVEuaOukxdHPfgHr-2yVlouz3Nvxhry86va0fpy7G7Pmc0n9pBFcSzmKRfKO0leU675rwWD2Ejcovwxn5hK5Wc2_yM0lcsN6CdWpb65U7C5-RiymuojJoY-l-zU-x_-L_AFkQJNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184432941</pqid></control><display><type>article</type><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</creator><creatorcontrib>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</creatorcontrib><description>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.08.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenite ; Austenite transformation ; Austenitic stainless steels ; Coefficient of friction ; Corrosion resistance ; Corrosion tests ; Corrosive wear ; Crystal structure ; Electron beams ; Friction reduction ; Friction resistance ; Gamma phase ; Hardness ; Heat treatment ; High carbon steel ; High carbon steels ; High-corrosion resistance ; High-hardness ; Phase transitions ; Plasma diode electron beam ; Plasma diodes ; SKD11 ; Toughness ; Transmission electron microscopy ; Ultrasonic testing ; Wear resistance ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Journal of materials processing technology, 2019-05, Vol.267, p.80-89</ispartof><rights>2018</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2018.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kang, Eun Goo</creatorcontrib><creatorcontrib>Choi, Hon Zong</creatorcontrib><creatorcontrib>Min, Byung-Kwon</creatorcontrib><creatorcontrib>Lee, Sang Jo</creatorcontrib><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><title>Journal of materials processing technology</title><description>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</description><subject>Austenite</subject><subject>Austenite transformation</subject><subject>Austenitic stainless steels</subject><subject>Coefficient of friction</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Corrosive wear</subject><subject>Crystal structure</subject><subject>Electron beams</subject><subject>Friction reduction</subject><subject>Friction resistance</subject><subject>Gamma phase</subject><subject>Hardness</subject><subject>Heat treatment</subject><subject>High carbon steel</subject><subject>High carbon steels</subject><subject>High-corrosion resistance</subject><subject>High-hardness</subject><subject>Phase transitions</subject><subject>Plasma diode electron beam</subject><subject>Plasma diodes</subject><subject>SKD11</subject><subject>Toughness</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic testing</subject><subject>Wear resistance</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE2rFDEQDKLg-vQ_BDzPmmQymcxRn5_4wIO-c-gkHV-GnWRMsoJn_7hZVvAoNHTTVFV3FSGUsyNnXL1aj-sGbS-5oTsKxvWR9RLqETlwPY-DnGf5mBzYIuTA-Kiekme1rozxmWl9IL_vT61AzSk6GrcdXKOtILQNU6OQPHW5lFxjTrRh7avQsND2gBTOtWGKDen-ABU7DVINufRvLugc6NfPbzmn5xrTdwp0P0HdgPqYPVI8oWulwyzC9pw8CXCq-OJvvyH37999u_043H358On29d3gxMLbIJQHq-eJTVIHZ5WCZZo6P0zj5IVSYVEuaOukxdHPfgHr-2yVlouz3Nvxhry86va0fpy7G7Pmc0n9pBFcSzmKRfKO0leU675rwWD2Ejcovwxn5hK5Wc2_yM0lcsN6CdWpb65U7C5-RiymuojJoY-l-zU-x_-L_AFkQJNZ</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Kang, Eun Goo</creator><creator>Choi, Hon Zong</creator><creator>Min, Byung-Kwon</creator><creator>Lee, Sang Jo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201905</creationdate><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><author>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenite</topic><topic>Austenite transformation</topic><topic>Austenitic stainless steels</topic><topic>Coefficient of friction</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Corrosive wear</topic><topic>Crystal structure</topic><topic>Electron beams</topic><topic>Friction reduction</topic><topic>Friction resistance</topic><topic>Gamma phase</topic><topic>Hardness</topic><topic>Heat treatment</topic><topic>High carbon steel</topic><topic>High carbon steels</topic><topic>High-corrosion resistance</topic><topic>High-hardness</topic><topic>Phase transitions</topic><topic>Plasma diode electron beam</topic><topic>Plasma diodes</topic><topic>SKD11</topic><topic>Toughness</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic testing</topic><topic>Wear resistance</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Eun Goo</creatorcontrib><creatorcontrib>Choi, Hon Zong</creatorcontrib><creatorcontrib>Min, Byung-Kwon</creatorcontrib><creatorcontrib>Lee, Sang Jo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Eun Goo</au><au>Choi, Hon Zong</au><au>Min, Byung-Kwon</au><au>Lee, Sang Jo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-05</date><risdate>2019</risdate><volume>267</volume><spage>80</spage><epage>89</epage><pages>80-89</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.08.026</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2019-05, Vol.267, p.80-89 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_proquest_journals_2184432941 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Austenite Austenite transformation Austenitic stainless steels Coefficient of friction Corrosion resistance Corrosion tests Corrosive wear Crystal structure Electron beams Friction reduction Friction resistance Gamma phase Hardness Heat treatment High carbon steel High carbon steels High-corrosion resistance High-hardness Phase transitions Plasma diode electron beam Plasma diodes SKD11 Toughness Transmission electron microscopy Ultrasonic testing Wear resistance X ray powder diffraction X-ray diffraction |
title | Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20impact%20treatment%20and%20corrosion%20test%20after%20the%20austenite%20phase%20transformation%20of%20SKD11%20using%20a%20plasma%20diode%20electron%20beam&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Kang,%20Eun%20Goo&rft.date=2019-05&rft.volume=267&rft.spage=80&rft.epage=89&rft.pages=80-89&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.08.026&rft_dat=%3Cproquest_cross%3E2184432941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184432941&rft_id=info:pmid/&rft_els_id=S0924013618303686&rfr_iscdi=true |