Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam

This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2019-05, Vol.267, p.80-89
Hauptverfasser: Kang, Eun Goo, Choi, Hon Zong, Min, Byung-Kwon, Lee, Sang Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 80
container_title Journal of materials processing technology
container_volume 267
creator Kang, Eun Goo
Choi, Hon Zong
Min, Byung-Kwon
Lee, Sang Jo
description This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.
doi_str_mv 10.1016/j.jmatprotec.2018.08.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184432941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618303686</els_id><sourcerecordid>2184432941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</originalsourceid><addsrcrecordid>eNqFUE2rFDEQDKLg-vQ_BDzPmmQymcxRn5_4wIO-c-gkHV-GnWRMsoJn_7hZVvAoNHTTVFV3FSGUsyNnXL1aj-sGbS-5oTsKxvWR9RLqETlwPY-DnGf5mBzYIuTA-Kiekme1rozxmWl9IL_vT61AzSk6GrcdXKOtILQNU6OQPHW5lFxjTrRh7avQsND2gBTOtWGKDen-ABU7DVINufRvLugc6NfPbzmn5xrTdwp0P0HdgPqYPVI8oWulwyzC9pw8CXCq-OJvvyH37999u_043H358On29d3gxMLbIJQHq-eJTVIHZ5WCZZo6P0zj5IVSYVEuaOukxdHPfgHr-2yVlouz3Nvxhry86va0fpy7G7Pmc0n9pBFcSzmKRfKO0leU675rwWD2Ejcovwxn5hK5Wc2_yM0lcsN6CdWpb65U7C5-RiymuojJoY-l-zU-x_-L_AFkQJNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184432941</pqid></control><display><type>article</type><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</creator><creatorcontrib>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</creatorcontrib><description>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.08.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenite ; Austenite transformation ; Austenitic stainless steels ; Coefficient of friction ; Corrosion resistance ; Corrosion tests ; Corrosive wear ; Crystal structure ; Electron beams ; Friction reduction ; Friction resistance ; Gamma phase ; Hardness ; Heat treatment ; High carbon steel ; High carbon steels ; High-corrosion resistance ; High-hardness ; Phase transitions ; Plasma diode electron beam ; Plasma diodes ; SKD11 ; Toughness ; Transmission electron microscopy ; Ultrasonic testing ; Wear resistance ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Journal of materials processing technology, 2019-05, Vol.267, p.80-89</ispartof><rights>2018</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2018.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kang, Eun Goo</creatorcontrib><creatorcontrib>Choi, Hon Zong</creatorcontrib><creatorcontrib>Min, Byung-Kwon</creatorcontrib><creatorcontrib>Lee, Sang Jo</creatorcontrib><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><title>Journal of materials processing technology</title><description>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</description><subject>Austenite</subject><subject>Austenite transformation</subject><subject>Austenitic stainless steels</subject><subject>Coefficient of friction</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Corrosive wear</subject><subject>Crystal structure</subject><subject>Electron beams</subject><subject>Friction reduction</subject><subject>Friction resistance</subject><subject>Gamma phase</subject><subject>Hardness</subject><subject>Heat treatment</subject><subject>High carbon steel</subject><subject>High carbon steels</subject><subject>High-corrosion resistance</subject><subject>High-hardness</subject><subject>Phase transitions</subject><subject>Plasma diode electron beam</subject><subject>Plasma diodes</subject><subject>SKD11</subject><subject>Toughness</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic testing</subject><subject>Wear resistance</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE2rFDEQDKLg-vQ_BDzPmmQymcxRn5_4wIO-c-gkHV-GnWRMsoJn_7hZVvAoNHTTVFV3FSGUsyNnXL1aj-sGbS-5oTsKxvWR9RLqETlwPY-DnGf5mBzYIuTA-Kiekme1rozxmWl9IL_vT61AzSk6GrcdXKOtILQNU6OQPHW5lFxjTrRh7avQsND2gBTOtWGKDen-ABU7DVINufRvLugc6NfPbzmn5xrTdwp0P0HdgPqYPVI8oWulwyzC9pw8CXCq-OJvvyH37999u_043H358On29d3gxMLbIJQHq-eJTVIHZ5WCZZo6P0zj5IVSYVEuaOukxdHPfgHr-2yVlouz3Nvxhry86va0fpy7G7Pmc0n9pBFcSzmKRfKO0leU675rwWD2Ejcovwxn5hK5Wc2_yM0lcsN6CdWpb65U7C5-RiymuojJoY-l-zU-x_-L_AFkQJNZ</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Kang, Eun Goo</creator><creator>Choi, Hon Zong</creator><creator>Min, Byung-Kwon</creator><creator>Lee, Sang Jo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201905</creationdate><title>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</title><author>Kang, Eun Goo ; Choi, Hon Zong ; Min, Byung-Kwon ; Lee, Sang Jo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-26dab8750548fcb66a955beaf535d266f96cf8bc4be3d7d9abdc4bb6849cb1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenite</topic><topic>Austenite transformation</topic><topic>Austenitic stainless steels</topic><topic>Coefficient of friction</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Corrosive wear</topic><topic>Crystal structure</topic><topic>Electron beams</topic><topic>Friction reduction</topic><topic>Friction resistance</topic><topic>Gamma phase</topic><topic>Hardness</topic><topic>Heat treatment</topic><topic>High carbon steel</topic><topic>High carbon steels</topic><topic>High-corrosion resistance</topic><topic>High-hardness</topic><topic>Phase transitions</topic><topic>Plasma diode electron beam</topic><topic>Plasma diodes</topic><topic>SKD11</topic><topic>Toughness</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic testing</topic><topic>Wear resistance</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Eun Goo</creatorcontrib><creatorcontrib>Choi, Hon Zong</creatorcontrib><creatorcontrib>Min, Byung-Kwon</creatorcontrib><creatorcontrib>Lee, Sang Jo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Eun Goo</au><au>Choi, Hon Zong</au><au>Min, Byung-Kwon</au><au>Lee, Sang Jo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-05</date><risdate>2019</risdate><volume>267</volume><spage>80</spage><epage>89</epage><pages>80-89</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>This study was undertaken for improving the corrosion resistance, hardness, and toughness of SKD11, using the developed plasma diode electron beam equipment (PD-Ebeam). The SKD11 in this study is 1.5 w.t.% high-carbon steel; however, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analysis results after the PD-Ebeam treatment reveal that almost the entire iron matrix underwent an austenite phase transformation (F.C.C. crystal structure). Thus, an attempt is made to improve the hardness, toughness, and corrosion resistance using a characteristic of the austenite steel. A hardness enhancement of up to 680 (H.V.) could be achieved through PD-Ebeam heat and ultrasonic impact treatments. Further, the gamma structure sustainability and non-carbide formation were confirmed through the XRD and TEM analysis results. In addition, the friction coefficient in a wear test, was found to be lesser than that of vacuum heat-treated material, owing to the ductility of the gamma phase. As a result, it achieved 18% friction reduction, 47% reduction of wear, and corrosion resistance of level of the stainless steel (SUS304) compared to general vacuum heat treatment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.08.026</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2019-05, Vol.267, p.80-89
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2184432941
source Elsevier ScienceDirect Journals Complete
subjects Austenite
Austenite transformation
Austenitic stainless steels
Coefficient of friction
Corrosion resistance
Corrosion tests
Corrosive wear
Crystal structure
Electron beams
Friction reduction
Friction resistance
Gamma phase
Hardness
Heat treatment
High carbon steel
High carbon steels
High-corrosion resistance
High-hardness
Phase transitions
Plasma diode electron beam
Plasma diodes
SKD11
Toughness
Transmission electron microscopy
Ultrasonic testing
Wear resistance
X ray powder diffraction
X-ray diffraction
title Ultrasonic impact treatment and corrosion test after the austenite phase transformation of SKD11 using a plasma diode electron beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20impact%20treatment%20and%20corrosion%20test%20after%20the%20austenite%20phase%20transformation%20of%20SKD11%20using%20a%20plasma%20diode%20electron%20beam&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Kang,%20Eun%20Goo&rft.date=2019-05&rft.volume=267&rft.spage=80&rft.epage=89&rft.pages=80-89&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.08.026&rft_dat=%3Cproquest_cross%3E2184432941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184432941&rft_id=info:pmid/&rft_els_id=S0924013618303686&rfr_iscdi=true