Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit

The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2019-03, Vol.82 (3), p.244-249
Hauptverfasser: Terada, Hitomi, Saitoh, Yurika, Kametani, Kiyokazu, Sakaguchi, Masahiko, Sakamoto, Takeharu, Kamijo, Akio, Terada, Nobuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 3
container_start_page 244
container_title Microscopy research and technique
container_volume 82
creator Terada, Hitomi
Saitoh, Yurika
Kametani, Kiyokazu
Sakaguchi, Masahiko
Sakamoto, Takeharu
Kamijo, Akio
Terada, Nobuo
description The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds. Living Drosophila were directly inserted into the high‐pressure freezing machine. Wide areas of compound eyes were observed without obvious ice‐crystal formation. Organelle localization in photoreceptor cells under light stimulation was detected.
doi_str_mv 10.1002/jemt.23166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184325926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184325926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EoqWw8ADIEhtSiu0kTTKiUv6piKVIbJETXxpXSRxsB9ROrGw8I0-CQ4GR6e6---k7-0PomJIxJYSdr6C2Y-bTyWQHDSlJIs-pyW7fh4mXUPI0QAfGrAihNKTBPhr4JIwZC_0hep9VkFutGlzLXCuTq1bmWGUG9Au30umqwG2prNKQQ-sKzqGqDJYNFtJptlq73uEWBOYNGFuClRs3XDo71Zay4g6wCnNcymX5-fbRajCm04ALDbCRzRJ3jbSHaK_glYGjnzpCj1ezxfTGmz9c304v5l7e_9ALBKEiKHgCgpKYZkUmgjiAKGYh4cDd2udhxopYCBJHTMTMJwXLIAn8SSQY8UfodOvbavXcufemK9Xpxp1MGY0Dn4UJmzjqbEv1oRgNRdpqWXO9TilJ-9TTPvX0O3UHn_xYdlkN4g_9jdkBdAu8ygrW_1ild7P7xdb0C1Yskac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184325926</pqid></control><display><type>article</type><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</creator><creatorcontrib>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</creatorcontrib><description>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds. Living Drosophila were directly inserted into the high‐pressure freezing machine. Wide areas of compound eyes were observed without obvious ice‐crystal formation. Organelle localization in photoreceptor cells under light stimulation was detected.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23166</identifier><identifier>PMID: 30582253</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Cryopreservation - methods ; Drosophila ; Drosophila - ultrastructure ; Exposure ; Freezing ; high‐pressure freezing ; Ice formation ; Insects ; Light ; Microscopy, Electron, Transmission - methods ; Ommatidia ; Organelles ; photoreceptor cell ; Photoreceptor Cells, Invertebrate - ultrastructure ; Photoreceptors ; Pressure ; Transmission electron microscopy</subject><ispartof>Microscopy research and technique, 2019-03, Vol.82 (3), p.244-249</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</cites><orcidid>0000-0002-9817-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30582253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terada, Hitomi</creatorcontrib><creatorcontrib>Saitoh, Yurika</creatorcontrib><creatorcontrib>Kametani, Kiyokazu</creatorcontrib><creatorcontrib>Sakaguchi, Masahiko</creatorcontrib><creatorcontrib>Sakamoto, Takeharu</creatorcontrib><creatorcontrib>Kamijo, Akio</creatorcontrib><creatorcontrib>Terada, Nobuo</creatorcontrib><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds. Living Drosophila were directly inserted into the high‐pressure freezing machine. Wide areas of compound eyes were observed without obvious ice‐crystal formation. Organelle localization in photoreceptor cells under light stimulation was detected.</description><subject>Animals</subject><subject>Cryopreservation - methods</subject><subject>Drosophila</subject><subject>Drosophila - ultrastructure</subject><subject>Exposure</subject><subject>Freezing</subject><subject>high‐pressure freezing</subject><subject>Ice formation</subject><subject>Insects</subject><subject>Light</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Ommatidia</subject><subject>Organelles</subject><subject>photoreceptor cell</subject><subject>Photoreceptor Cells, Invertebrate - ultrastructure</subject><subject>Photoreceptors</subject><subject>Pressure</subject><subject>Transmission electron microscopy</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL9OwzAQxi0EoqWw8ADIEhtSiu0kTTKiUv6piKVIbJETXxpXSRxsB9ROrGw8I0-CQ4GR6e6---k7-0PomJIxJYSdr6C2Y-bTyWQHDSlJIs-pyW7fh4mXUPI0QAfGrAihNKTBPhr4JIwZC_0hep9VkFutGlzLXCuTq1bmWGUG9Au30umqwG2prNKQQ-sKzqGqDJYNFtJptlq73uEWBOYNGFuClRs3XDo71Zay4g6wCnNcymX5-fbRajCm04ALDbCRzRJ3jbSHaK_glYGjnzpCj1ezxfTGmz9c304v5l7e_9ALBKEiKHgCgpKYZkUmgjiAKGYh4cDd2udhxopYCBJHTMTMJwXLIAn8SSQY8UfodOvbavXcufemK9Xpxp1MGY0Dn4UJmzjqbEv1oRgNRdpqWXO9TilJ-9TTPvX0O3UHn_xYdlkN4g_9jdkBdAu8ygrW_1ild7P7xdb0C1Yskac</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Terada, Hitomi</creator><creator>Saitoh, Yurika</creator><creator>Kametani, Kiyokazu</creator><creator>Sakaguchi, Masahiko</creator><creator>Sakamoto, Takeharu</creator><creator>Kamijo, Akio</creator><creator>Terada, Nobuo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9817-0539</orcidid></search><sort><creationdate>201903</creationdate><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><author>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cryopreservation - methods</topic><topic>Drosophila</topic><topic>Drosophila - ultrastructure</topic><topic>Exposure</topic><topic>Freezing</topic><topic>high‐pressure freezing</topic><topic>Ice formation</topic><topic>Insects</topic><topic>Light</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Ommatidia</topic><topic>Organelles</topic><topic>photoreceptor cell</topic><topic>Photoreceptor Cells, Invertebrate - ultrastructure</topic><topic>Photoreceptors</topic><topic>Pressure</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terada, Hitomi</creatorcontrib><creatorcontrib>Saitoh, Yurika</creatorcontrib><creatorcontrib>Kametani, Kiyokazu</creatorcontrib><creatorcontrib>Sakaguchi, Masahiko</creatorcontrib><creatorcontrib>Sakamoto, Takeharu</creatorcontrib><creatorcontrib>Kamijo, Akio</creatorcontrib><creatorcontrib>Terada, Nobuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terada, Hitomi</au><au>Saitoh, Yurika</au><au>Kametani, Kiyokazu</au><au>Sakaguchi, Masahiko</au><au>Sakamoto, Takeharu</au><au>Kamijo, Akio</au><au>Terada, Nobuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2019-03</date><risdate>2019</risdate><volume>82</volume><issue>3</issue><spage>244</spage><epage>249</epage><pages>244-249</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds. Living Drosophila were directly inserted into the high‐pressure freezing machine. Wide areas of compound eyes were observed without obvious ice‐crystal formation. Organelle localization in photoreceptor cells under light stimulation was detected.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30582253</pmid><doi>10.1002/jemt.23166</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9817-0539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2019-03, Vol.82 (3), p.244-249
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_journals_2184325926
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Cryopreservation - methods
Drosophila
Drosophila - ultrastructure
Exposure
Freezing
high‐pressure freezing
Ice formation
Insects
Light
Microscopy, Electron, Transmission - methods
Ommatidia
Organelles
photoreceptor cell
Photoreceptor Cells, Invertebrate - ultrastructure
Photoreceptors
Pressure
Transmission electron microscopy
title Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20microscopic%20observation%20of%20photoreceptor%20cells%20in%20directly%20inserted%20anesthetized%20Drosophila%20into%20a%20high%E2%80%90pressure%20freezing%20unit&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Terada,%20Hitomi&rft.date=2019-03&rft.volume=82&rft.issue=3&rft.spage=244&rft.epage=249&rft.pages=244-249&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23166&rft_dat=%3Cproquest_cross%3E2184325926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184325926&rft_id=info:pmid/30582253&rfr_iscdi=true