Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit
The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF u...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2019-03, Vol.82 (3), p.244-249 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 3 |
container_start_page | 244 |
container_title | Microscopy research and technique |
container_volume | 82 |
creator | Terada, Hitomi Saitoh, Yurika Kametani, Kiyokazu Sakaguchi, Masahiko Sakamoto, Takeharu Kamijo, Akio Terada, Nobuo |
description | The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds.
Living Drosophila were directly inserted into the high‐pressure freezing machine.
Wide areas of compound eyes were observed without obvious ice‐crystal formation.
Organelle localization in photoreceptor cells under light stimulation was detected. |
doi_str_mv | 10.1002/jemt.23166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184325926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184325926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EoqWw8ADIEhtSiu0kTTKiUv6piKVIbJETXxpXSRxsB9ROrGw8I0-CQ4GR6e6---k7-0PomJIxJYSdr6C2Y-bTyWQHDSlJIs-pyW7fh4mXUPI0QAfGrAihNKTBPhr4JIwZC_0hep9VkFutGlzLXCuTq1bmWGUG9Au30umqwG2prNKQQ-sKzqGqDJYNFtJptlq73uEWBOYNGFuClRs3XDo71Zay4g6wCnNcymX5-fbRajCm04ALDbCRzRJ3jbSHaK_glYGjnzpCj1ezxfTGmz9c304v5l7e_9ALBKEiKHgCgpKYZkUmgjiAKGYh4cDd2udhxopYCBJHTMTMJwXLIAn8SSQY8UfodOvbavXcufemK9Xpxp1MGY0Dn4UJmzjqbEv1oRgNRdpqWXO9TilJ-9TTPvX0O3UHn_xYdlkN4g_9jdkBdAu8ygrW_1ild7P7xdb0C1Yskac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184325926</pqid></control><display><type>article</type><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</creator><creatorcontrib>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</creatorcontrib><description>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds.
Living Drosophila were directly inserted into the high‐pressure freezing machine.
Wide areas of compound eyes were observed without obvious ice‐crystal formation.
Organelle localization in photoreceptor cells under light stimulation was detected.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23166</identifier><identifier>PMID: 30582253</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Cryopreservation - methods ; Drosophila ; Drosophila - ultrastructure ; Exposure ; Freezing ; high‐pressure freezing ; Ice formation ; Insects ; Light ; Microscopy, Electron, Transmission - methods ; Ommatidia ; Organelles ; photoreceptor cell ; Photoreceptor Cells, Invertebrate - ultrastructure ; Photoreceptors ; Pressure ; Transmission electron microscopy</subject><ispartof>Microscopy research and technique, 2019-03, Vol.82 (3), p.244-249</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</cites><orcidid>0000-0002-9817-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30582253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terada, Hitomi</creatorcontrib><creatorcontrib>Saitoh, Yurika</creatorcontrib><creatorcontrib>Kametani, Kiyokazu</creatorcontrib><creatorcontrib>Sakaguchi, Masahiko</creatorcontrib><creatorcontrib>Sakamoto, Takeharu</creatorcontrib><creatorcontrib>Kamijo, Akio</creatorcontrib><creatorcontrib>Terada, Nobuo</creatorcontrib><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds.
Living Drosophila were directly inserted into the high‐pressure freezing machine.
Wide areas of compound eyes were observed without obvious ice‐crystal formation.
Organelle localization in photoreceptor cells under light stimulation was detected.</description><subject>Animals</subject><subject>Cryopreservation - methods</subject><subject>Drosophila</subject><subject>Drosophila - ultrastructure</subject><subject>Exposure</subject><subject>Freezing</subject><subject>high‐pressure freezing</subject><subject>Ice formation</subject><subject>Insects</subject><subject>Light</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Ommatidia</subject><subject>Organelles</subject><subject>photoreceptor cell</subject><subject>Photoreceptor Cells, Invertebrate - ultrastructure</subject><subject>Photoreceptors</subject><subject>Pressure</subject><subject>Transmission electron microscopy</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL9OwzAQxi0EoqWw8ADIEhtSiu0kTTKiUv6piKVIbJETXxpXSRxsB9ROrGw8I0-CQ4GR6e6---k7-0PomJIxJYSdr6C2Y-bTyWQHDSlJIs-pyW7fh4mXUPI0QAfGrAihNKTBPhr4JIwZC_0hep9VkFutGlzLXCuTq1bmWGUG9Au30umqwG2prNKQQ-sKzqGqDJYNFtJptlq73uEWBOYNGFuClRs3XDo71Zay4g6wCnNcymX5-fbRajCm04ALDbCRzRJ3jbSHaK_glYGjnzpCj1ezxfTGmz9c304v5l7e_9ALBKEiKHgCgpKYZkUmgjiAKGYh4cDd2udhxopYCBJHTMTMJwXLIAn8SSQY8UfodOvbavXcufemK9Xpxp1MGY0Dn4UJmzjqbEv1oRgNRdpqWXO9TilJ-9TTPvX0O3UHn_xYdlkN4g_9jdkBdAu8ygrW_1ild7P7xdb0C1Yskac</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Terada, Hitomi</creator><creator>Saitoh, Yurika</creator><creator>Kametani, Kiyokazu</creator><creator>Sakaguchi, Masahiko</creator><creator>Sakamoto, Takeharu</creator><creator>Kamijo, Akio</creator><creator>Terada, Nobuo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9817-0539</orcidid></search><sort><creationdate>201903</creationdate><title>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</title><author>Terada, Hitomi ; Saitoh, Yurika ; Kametani, Kiyokazu ; Sakaguchi, Masahiko ; Sakamoto, Takeharu ; Kamijo, Akio ; Terada, Nobuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3166-4d01d4fa9ed1081bfbd484e78250aea4d03a5b2f8dd0872d8230f2be94367d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cryopreservation - methods</topic><topic>Drosophila</topic><topic>Drosophila - ultrastructure</topic><topic>Exposure</topic><topic>Freezing</topic><topic>high‐pressure freezing</topic><topic>Ice formation</topic><topic>Insects</topic><topic>Light</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Ommatidia</topic><topic>Organelles</topic><topic>photoreceptor cell</topic><topic>Photoreceptor Cells, Invertebrate - ultrastructure</topic><topic>Photoreceptors</topic><topic>Pressure</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terada, Hitomi</creatorcontrib><creatorcontrib>Saitoh, Yurika</creatorcontrib><creatorcontrib>Kametani, Kiyokazu</creatorcontrib><creatorcontrib>Sakaguchi, Masahiko</creatorcontrib><creatorcontrib>Sakamoto, Takeharu</creatorcontrib><creatorcontrib>Kamijo, Akio</creatorcontrib><creatorcontrib>Terada, Nobuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terada, Hitomi</au><au>Saitoh, Yurika</au><au>Kametani, Kiyokazu</au><au>Sakaguchi, Masahiko</au><au>Sakamoto, Takeharu</au><au>Kamijo, Akio</au><au>Terada, Nobuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2019-03</date><risdate>2019</risdate><volume>82</volume><issue>3</issue><spage>244</spage><epage>249</epage><pages>244-249</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>The high‐pressure freezing (HPF) technique is known to cryofix water‐containing materials with little ice‐crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light‐exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight‐exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds.
Living Drosophila were directly inserted into the high‐pressure freezing machine.
Wide areas of compound eyes were observed without obvious ice‐crystal formation.
Organelle localization in photoreceptor cells under light stimulation was detected.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30582253</pmid><doi>10.1002/jemt.23166</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9817-0539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2019-03, Vol.82 (3), p.244-249 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_journals_2184325926 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Cryopreservation - methods Drosophila Drosophila - ultrastructure Exposure Freezing high‐pressure freezing Ice formation Insects Light Microscopy, Electron, Transmission - methods Ommatidia Organelles photoreceptor cell Photoreceptor Cells, Invertebrate - ultrastructure Photoreceptors Pressure Transmission electron microscopy |
title | Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high‐pressure freezing unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20microscopic%20observation%20of%20photoreceptor%20cells%20in%20directly%20inserted%20anesthetized%20Drosophila%20into%20a%20high%E2%80%90pressure%20freezing%20unit&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Terada,%20Hitomi&rft.date=2019-03&rft.volume=82&rft.issue=3&rft.spage=244&rft.epage=249&rft.pages=244-249&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23166&rft_dat=%3Cproquest_cross%3E2184325926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184325926&rft_id=info:pmid/30582253&rfr_iscdi=true |