Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration

Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl 2 , Na 2 S 2 O 3 and GaCl 3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-03, Vol.30 (5), p.4977-4989
Hauptverfasser: Echendu, O. K., Werta, S. Z., Dejene, F. B., Ojo, A. A., Dharmadasa, I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4989
container_issue 5
container_start_page 4977
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Echendu, O. K.
Werta, S. Z.
Dejene, F. B.
Ojo, A. A.
Dharmadasa, I. M.
description Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl 2 , Na 2 S 2 O 3 and GaCl 3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl 3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl 3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl 3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.
doi_str_mv 10.1007/s10854-019-00794-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184216118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184216118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c7bd8cca81d31b3fd0b1a51995d151a6d7a41a5144dab34749988ce24d38f3d33</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgejSZZGYy7qRoFQouVHAXMkmmTUmTMcks-h3-sJlWcOfq8d6791y4AFxjdIsRau4iRqyiBcJtkdeWFuQEzHDVkIKy8vMUzFBbNQWtyvIcXMS4RQjVlLAZ-F4KqPxg3Br6HjrhvAz7mIS1xmm4UG8wbYyDvbG7CLs91FbLFLzSg48mGe_gTqeNV7D3AUZvRYBSWwvFMFgjxaS4zwgNjevtqJ3UU05OFC7BIWg5hpid0uePS-FguARnvbBRX_3OOfh4enxfPBer1-XL4mFVSFKTVMimU0xKwbAiuCO9Qh0WFW7bSuEKi1o1gk4HSpXoCG1o2zImdUkVYT1RhMzBzZE7BP816pj41o_B5UheYkZLXGPMsqo8qmTwMQbd8yGYnQh7jhGfyufH8nkunx_K5xOaHE0xi91ahz_0P64fGiOLFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184216118</pqid></control><display><type>article</type><title>Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Echendu, O. K. ; Werta, S. Z. ; Dejene, F. B. ; Ojo, A. A. ; Dharmadasa, I. M.</creator><creatorcontrib>Echendu, O. K. ; Werta, S. Z. ; Dejene, F. B. ; Ojo, A. A. ; Dharmadasa, I. M.</creatorcontrib><description>Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl 2 , Na 2 S 2 O 3 and GaCl 3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl 3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl 3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl 3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-00794-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Buffer layers ; Cadmium sulfide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cracks ; Crystal lattices ; Crystallites ; Doping ; Electrodeposition ; Electrolytes ; Electrolytic cells ; Energy dispersive X ray spectroscopy ; Gallium chloride ; Glass substrates ; Indium tin oxides ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Photoluminescence ; Photovoltaic cells ; Precursors ; Scanning electron microscopy ; Sodium thiosulfate ; Solar cells ; Spectrophotometry ; State of the art ; Thin films ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2019-03, Vol.30 (5), p.4977-4989</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c7bd8cca81d31b3fd0b1a51995d151a6d7a41a5144dab34749988ce24d38f3d33</citedby><cites>FETCH-LOGICAL-c363t-c7bd8cca81d31b3fd0b1a51995d151a6d7a41a5144dab34749988ce24d38f3d33</cites><orcidid>0000-0002-6505-577X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-00794-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-00794-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Echendu, O. K.</creatorcontrib><creatorcontrib>Werta, S. Z.</creatorcontrib><creatorcontrib>Dejene, F. B.</creatorcontrib><creatorcontrib>Ojo, A. A.</creatorcontrib><creatorcontrib>Dharmadasa, I. M.</creatorcontrib><title>Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl 2 , Na 2 S 2 O 3 and GaCl 3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl 3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl 3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl 3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.</description><subject>Annealing</subject><subject>Buffer layers</subject><subject>Cadmium sulfide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cracks</subject><subject>Crystal lattices</subject><subject>Crystallites</subject><subject>Doping</subject><subject>Electrodeposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Gallium chloride</subject><subject>Glass substrates</subject><subject>Indium tin oxides</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Scanning electron microscopy</subject><subject>Sodium thiosulfate</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>State of the art</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4CrgejSZZGYy7qRoFQouVHAXMkmmTUmTMcks-h3-sJlWcOfq8d6791y4AFxjdIsRau4iRqyiBcJtkdeWFuQEzHDVkIKy8vMUzFBbNQWtyvIcXMS4RQjVlLAZ-F4KqPxg3Br6HjrhvAz7mIS1xmm4UG8wbYyDvbG7CLs91FbLFLzSg48mGe_gTqeNV7D3AUZvRYBSWwvFMFgjxaS4zwgNjevtqJ3UU05OFC7BIWg5hpid0uePS-FguARnvbBRX_3OOfh4enxfPBer1-XL4mFVSFKTVMimU0xKwbAiuCO9Qh0WFW7bSuEKi1o1gk4HSpXoCG1o2zImdUkVYT1RhMzBzZE7BP816pj41o_B5UheYkZLXGPMsqo8qmTwMQbd8yGYnQh7jhGfyufH8nkunx_K5xOaHE0xi91ahz_0P64fGiOLFg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Echendu, O. K.</creator><creator>Werta, S. Z.</creator><creator>Dejene, F. B.</creator><creator>Ojo, A. A.</creator><creator>Dharmadasa, I. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6505-577X</orcidid></search><sort><creationdate>20190301</creationdate><title>Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration</title><author>Echendu, O. K. ; Werta, S. Z. ; Dejene, F. B. ; Ojo, A. A. ; Dharmadasa, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c7bd8cca81d31b3fd0b1a51995d151a6d7a41a5144dab34749988ce24d38f3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Buffer layers</topic><topic>Cadmium sulfide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cracks</topic><topic>Crystal lattices</topic><topic>Crystallites</topic><topic>Doping</topic><topic>Electrodeposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Gallium chloride</topic><topic>Glass substrates</topic><topic>Indium tin oxides</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Scanning electron microscopy</topic><topic>Sodium thiosulfate</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>State of the art</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echendu, O. K.</creatorcontrib><creatorcontrib>Werta, S. Z.</creatorcontrib><creatorcontrib>Dejene, F. B.</creatorcontrib><creatorcontrib>Ojo, A. A.</creatorcontrib><creatorcontrib>Dharmadasa, I. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echendu, O. K.</au><au>Werta, S. Z.</au><au>Dejene, F. B.</au><au>Ojo, A. A.</au><au>Dharmadasa, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>30</volume><issue>5</issue><spage>4977</spage><epage>4989</epage><pages>4977-4989</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Ga doping of CdS thin films has been achieved using a simplified cathodic electrodeposition method and with glass/indium tin oxide (glass/ITO) as a substrate. CdCl 2 , Na 2 S 2 O 3 and GaCl 3 were used as precursors. The Ga-doped and un-doped CdS films obtained were characterized for their structural, optical, luminescence, compositional and morphological properties using state-of-the-art X-ray diffraction (XRD), spectrophotometry, room-temperature photoluminescence (PL), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. XRD results show that the presence of Ga ions in the deposition electrolyte and post-deposition annealing promote crystallinity of deposited CdS films, with estimated crystallite sizes of the films in the range (5–22) nm after annealing. Optical characterization results show that incorporation of Ga atoms into the crystal lattice of CdS results in increase in energy bandgap of the films, which makes them advantageous for application as window/buffer layers in solar cells. PL results show a single green emission peak whose intensity increases as Ga-content of the films increases. EDX results show a direct relationship between the percentage atomic Ga composition of the CdS:Ga films and the molar concentration of GaCl 3 in the deposition electrolyte. SEM images reveal smooth surfaces of doped and un-doped CdS films. However, after annealing, cracks begin to develop in the films grown with electrolytic GaCl 3 concentration in excess of 0.004 M, thus indicating a possible threshold in GaCl 3 concentration for obtaining device-grade CdS:Ga films. The entire work presents one of the strengths of electrodeposition as a reliable semiconductor growth technique for device application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-00794-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6505-577X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-03, Vol.30 (5), p.4977-4989
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2184216118
source SpringerLink Journals - AutoHoldings
subjects Annealing
Buffer layers
Cadmium sulfide
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cracks
Crystal lattices
Crystallites
Doping
Electrodeposition
Electrolytes
Electrolytic cells
Energy dispersive X ray spectroscopy
Gallium chloride
Glass substrates
Indium tin oxides
Materials Science
Optical and Electronic Materials
Optical properties
Photoluminescence
Photovoltaic cells
Precursors
Scanning electron microscopy
Sodium thiosulfate
Solar cells
Spectrophotometry
State of the art
Thin films
X-ray diffraction
title Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ga%20doping%20of%20nanocrystalline%20CdS%20thin%20films%20by%20electrodeposition%20method%20for%20solar%20cell%20application:%20the%20influence%20of%20dopant%20precursor%20concentration&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Echendu,%20O.%20K.&rft.date=2019-03-01&rft.volume=30&rft.issue=5&rft.spage=4977&rft.epage=4989&rft.pages=4977-4989&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-00794-3&rft_dat=%3Cproquest_cross%3E2184216118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184216118&rft_id=info:pmid/&rfr_iscdi=true