Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration
We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic represen...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2018-11, Vol.81 (6), p.945-970 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 970 |
---|---|
container_issue | 6 |
container_start_page | 945 |
container_title | Physics of atomic nuclei |
container_volume | 81 |
creator | Gusev, A. A. Vinitsky, S. I. Chuluunbaatar, O. Góźdź, A. Derbov, V. L. Krassovitskiy, P. M. |
description | We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states. |
doi_str_mv | 10.1134/S1063778818060169 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2184212835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595872216</galeid><sourcerecordid>A595872216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuAKxfReWQeWYb6KhTEtoK7YZLchJR0ps6koP_eqRFciKs5w_nOfSF0SfANISy7XREsmJRKEYUFJiI_QhPCBU1FTt-Oo452evBP0VkIG4wJURxP0EtRd6Y0Q1clS9h5CGCH-HM2aZxPisFto3PXbcGHxNg6WftRdzaZub7vLBgflW26du-_g-fopDF9gIufd4peH-7Xs6d08fw4nxWLtGIcD2kFQKipjBSilBlWZcM5plJSqCtM67hHiRlryppleUMhU9zkLBdCltjw6LIpuhrr7rx730MY9MbtvY0tNSUqo4QqxiN1PVKt6UF3tnJ2gI-hNfsQ9Hy11AXPuZKUEhFZMrKVdyF4aPQubmv8pyZYH66s_1w5ZuiYCZG1LfjfKf4PfQEc930O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184212835</pqid></control><display><type>article</type><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><source>SpringerNature Journals</source><creator>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</creator><creatorcontrib>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</creatorcontrib><description>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778818060169</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic flow ; Algorithms ; Analysis ; Asymptotic methods ; Asymptotic series ; Basis functions ; Benchmarking ; Boundary value problems ; Differential equations ; Dimers ; Elementary Particles and Fields ; Mathematical models ; Ordinary differential equations ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Polar coordinates ; Potential barriers ; Representations ; Resonance scattering ; Trimers ; Two dimensional models</subject><ispartof>Physics of atomic nuclei, 2018-11, Vol.81 (6), p.945-970</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</citedby><cites>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778818060169$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778818060169$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Gusev, A. A.</creatorcontrib><creatorcontrib>Vinitsky, S. I.</creatorcontrib><creatorcontrib>Chuluunbaatar, O.</creatorcontrib><creatorcontrib>Góźdź, A.</creatorcontrib><creatorcontrib>Derbov, V. L.</creatorcontrib><creatorcontrib>Krassovitskiy, P. M.</creatorcontrib><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Basis functions</subject><subject>Benchmarking</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Dimers</subject><subject>Elementary Particles and Fields</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polar coordinates</subject><subject>Potential barriers</subject><subject>Representations</subject><subject>Resonance scattering</subject><subject>Trimers</subject><subject>Two dimensional models</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuAKxfReWQeWYb6KhTEtoK7YZLchJR0ps6koP_eqRFciKs5w_nOfSF0SfANISy7XREsmJRKEYUFJiI_QhPCBU1FTt-Oo452evBP0VkIG4wJURxP0EtRd6Y0Q1clS9h5CGCH-HM2aZxPisFto3PXbcGHxNg6WftRdzaZub7vLBgflW26du-_g-fopDF9gIufd4peH-7Xs6d08fw4nxWLtGIcD2kFQKipjBSilBlWZcM5plJSqCtM67hHiRlryppleUMhU9zkLBdCltjw6LIpuhrr7rx730MY9MbtvY0tNSUqo4QqxiN1PVKt6UF3tnJ2gI-hNfsQ9Hy11AXPuZKUEhFZMrKVdyF4aPQubmv8pyZYH66s_1w5ZuiYCZG1LfjfKf4PfQEc930O</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Gusev, A. A.</creator><creator>Vinitsky, S. I.</creator><creator>Chuluunbaatar, O.</creator><creator>Góźdź, A.</creator><creator>Derbov, V. L.</creator><creator>Krassovitskiy, P. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20181101</creationdate><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><author>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Basis functions</topic><topic>Benchmarking</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Dimers</topic><topic>Elementary Particles and Fields</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polar coordinates</topic><topic>Potential barriers</topic><topic>Representations</topic><topic>Resonance scattering</topic><topic>Trimers</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusev, A. A.</creatorcontrib><creatorcontrib>Vinitsky, S. I.</creatorcontrib><creatorcontrib>Chuluunbaatar, O.</creatorcontrib><creatorcontrib>Góźdź, A.</creatorcontrib><creatorcontrib>Derbov, V. L.</creatorcontrib><creatorcontrib>Krassovitskiy, P. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusev, A. A.</au><au>Vinitsky, S. I.</au><au>Chuluunbaatar, O.</au><au>Góźdź, A.</au><au>Derbov, V. L.</au><au>Krassovitskiy, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>81</volume><issue>6</issue><spage>945</spage><epage>970</epage><pages>945-970</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778818060169</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2018-11, Vol.81 (6), p.945-970 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_proquest_journals_2184212835 |
source | SpringerNature Journals |
subjects | Adiabatic flow Algorithms Analysis Asymptotic methods Asymptotic series Basis functions Benchmarking Boundary value problems Differential equations Dimers Elementary Particles and Fields Mathematical models Ordinary differential equations Particle and Nuclear Physics Physics Physics and Astronomy Polar coordinates Potential barriers Representations Resonance scattering Trimers Two dimensional models |
title | Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20Representation%20for%20Atomic%20Dimers%20and%20Trimers%20in%20Collinear%20Configuration&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Gusev,%20A.%20A.&rft.date=2018-11-01&rft.volume=81&rft.issue=6&rft.spage=945&rft.epage=970&rft.pages=945-970&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778818060169&rft_dat=%3Cgale_proqu%3EA595872216%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184212835&rft_id=info:pmid/&rft_galeid=A595872216&rfr_iscdi=true |