Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration

We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2018-11, Vol.81 (6), p.945-970
Hauptverfasser: Gusev, A. A., Vinitsky, S. I., Chuluunbaatar, O., Góźdź, A., Derbov, V. L., Krassovitskiy, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 6
container_start_page 945
container_title Physics of atomic nuclei
container_volume 81
creator Gusev, A. A.
Vinitsky, S. I.
Chuluunbaatar, O.
Góźdź, A.
Derbov, V. L.
Krassovitskiy, P. M.
description We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.
doi_str_mv 10.1134/S1063778818060169
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2184212835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595872216</galeid><sourcerecordid>A595872216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuAKxfReWQeWYb6KhTEtoK7YZLchJR0ps6koP_eqRFciKs5w_nOfSF0SfANISy7XREsmJRKEYUFJiI_QhPCBU1FTt-Oo452evBP0VkIG4wJURxP0EtRd6Y0Q1clS9h5CGCH-HM2aZxPisFto3PXbcGHxNg6WftRdzaZub7vLBgflW26du-_g-fopDF9gIufd4peH-7Xs6d08fw4nxWLtGIcD2kFQKipjBSilBlWZcM5plJSqCtM67hHiRlryppleUMhU9zkLBdCltjw6LIpuhrr7rx730MY9MbtvY0tNSUqo4QqxiN1PVKt6UF3tnJ2gI-hNfsQ9Hy11AXPuZKUEhFZMrKVdyF4aPQubmv8pyZYH66s_1w5ZuiYCZG1LfjfKf4PfQEc930O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184212835</pqid></control><display><type>article</type><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><source>SpringerNature Journals</source><creator>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</creator><creatorcontrib>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</creatorcontrib><description>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778818060169</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic flow ; Algorithms ; Analysis ; Asymptotic methods ; Asymptotic series ; Basis functions ; Benchmarking ; Boundary value problems ; Differential equations ; Dimers ; Elementary Particles and Fields ; Mathematical models ; Ordinary differential equations ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Polar coordinates ; Potential barriers ; Representations ; Resonance scattering ; Trimers ; Two dimensional models</subject><ispartof>Physics of atomic nuclei, 2018-11, Vol.81 (6), p.945-970</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</citedby><cites>FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778818060169$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778818060169$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Gusev, A. A.</creatorcontrib><creatorcontrib>Vinitsky, S. I.</creatorcontrib><creatorcontrib>Chuluunbaatar, O.</creatorcontrib><creatorcontrib>Góźdź, A.</creatorcontrib><creatorcontrib>Derbov, V. L.</creatorcontrib><creatorcontrib>Krassovitskiy, P. M.</creatorcontrib><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Basis functions</subject><subject>Benchmarking</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Dimers</subject><subject>Elementary Particles and Fields</subject><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polar coordinates</subject><subject>Potential barriers</subject><subject>Representations</subject><subject>Resonance scattering</subject><subject>Trimers</subject><subject>Two dimensional models</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuAKxfReWQeWYb6KhTEtoK7YZLchJR0ps6koP_eqRFciKs5w_nOfSF0SfANISy7XREsmJRKEYUFJiI_QhPCBU1FTt-Oo452evBP0VkIG4wJURxP0EtRd6Y0Q1clS9h5CGCH-HM2aZxPisFto3PXbcGHxNg6WftRdzaZub7vLBgflW26du-_g-fopDF9gIufd4peH-7Xs6d08fw4nxWLtGIcD2kFQKipjBSilBlWZcM5plJSqCtM67hHiRlryppleUMhU9zkLBdCltjw6LIpuhrr7rx730MY9MbtvY0tNSUqo4QqxiN1PVKt6UF3tnJ2gI-hNfsQ9Hy11AXPuZKUEhFZMrKVdyF4aPQubmv8pyZYH66s_1w5ZuiYCZG1LfjfKf4PfQEc930O</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Gusev, A. A.</creator><creator>Vinitsky, S. I.</creator><creator>Chuluunbaatar, O.</creator><creator>Góźdź, A.</creator><creator>Derbov, V. L.</creator><creator>Krassovitskiy, P. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20181101</creationdate><title>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</title><author>Gusev, A. A. ; Vinitsky, S. I. ; Chuluunbaatar, O. ; Góźdź, A. ; Derbov, V. L. ; Krassovitskiy, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cee12aca766b7408bf5502772edc02d818b033fbd349f2e485a939667b0a58183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Basis functions</topic><topic>Benchmarking</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Dimers</topic><topic>Elementary Particles and Fields</topic><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polar coordinates</topic><topic>Potential barriers</topic><topic>Representations</topic><topic>Resonance scattering</topic><topic>Trimers</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusev, A. A.</creatorcontrib><creatorcontrib>Vinitsky, S. I.</creatorcontrib><creatorcontrib>Chuluunbaatar, O.</creatorcontrib><creatorcontrib>Góźdź, A.</creatorcontrib><creatorcontrib>Derbov, V. L.</creatorcontrib><creatorcontrib>Krassovitskiy, P. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusev, A. A.</au><au>Vinitsky, S. I.</au><au>Chuluunbaatar, O.</au><au>Góźdź, A.</au><au>Derbov, V. L.</au><au>Krassovitskiy, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>81</volume><issue>6</issue><spage>945</spage><epage>970</epage><pages>945-970</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic representation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions, effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states, as well as the resonance scattering, metastable and bound states.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778818060169</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2018-11, Vol.81 (6), p.945-970
issn 1063-7788
1562-692X
language eng
recordid cdi_proquest_journals_2184212835
source SpringerNature Journals
subjects Adiabatic flow
Algorithms
Analysis
Asymptotic methods
Asymptotic series
Basis functions
Benchmarking
Boundary value problems
Differential equations
Dimers
Elementary Particles and Fields
Mathematical models
Ordinary differential equations
Particle and Nuclear Physics
Physics
Physics and Astronomy
Polar coordinates
Potential barriers
Representations
Resonance scattering
Trimers
Two dimensional models
title Adiabatic Representation for Atomic Dimers and Trimers in Collinear Configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20Representation%20for%20Atomic%20Dimers%20and%20Trimers%20in%20Collinear%20Configuration&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Gusev,%20A.%20A.&rft.date=2018-11-01&rft.volume=81&rft.issue=6&rft.spage=945&rft.epage=970&rft.pages=945-970&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778818060169&rft_dat=%3Cgale_proqu%3EA595872216%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184212835&rft_id=info:pmid/&rft_galeid=A595872216&rfr_iscdi=true