Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis

Tunable amount of monatomic and nanoscale Pt clusters were trapped in TiO2 and CeO2 nanowires via a generic one-step dealloying approach from designed Al-Ti-Pt and Al-Ce-Pt precursor alloys. It was demonstrated that the doped Pt were in the form of both single atoms and Pt clusters stabilized in TiO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-02, Vol.297, p.155-162
Hauptverfasser: Gao, J.J., Du, P., Zhang, Q.H., Shen, X., Chiang, F.-K., Wen, Y.R., Lin, Xi, Liu, X.J., Qiu, H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 155
container_title Electrochimica acta
container_volume 297
creator Gao, J.J.
Du, P.
Zhang, Q.H.
Shen, X.
Chiang, F.-K.
Wen, Y.R.
Lin, Xi
Liu, X.J.
Qiu, H.J.
description Tunable amount of monatomic and nanoscale Pt clusters were trapped in TiO2 and CeO2 nanowires via a generic one-step dealloying approach from designed Al-Ti-Pt and Al-Ce-Pt precursor alloys. It was demonstrated that the doped Pt were in the form of both single atoms and Pt clusters stabilized in TiO2 or CeO2 nanowires. Electrochemical tests manifested that these highly dispersed Pt doped metal oxide greatly enhanced the utilization efficiency of noble metals. When used as an electrocatalyst for the methanol oxidation reaction (MOR) or hydrogen evolution reaction (HER), the Pt-TiO2 or Pt-CeO2 catalysts after activation exhibited much higher catalytic activity and stability as compared to the commercial Pt/C catalyst. The highest mass activity of the Pt0.2-TiO2 catalysts obtained from dealloying Al85Ti14.8Pt0.2 reached 1200 mA mg−1 for MOR, more than six times higher than that of Pt/C. The mass activity of the Pt0.2-CeO2 for HER is around 50 times that of Pt/C. With clear advantages of low costs, simple fabrication procedure, and enhanced catalytic performance, these Pt-metal oxide nanowires can be suitable for many catalytic reactions. •A general top-down dealloying strategy is developed to stabilize single Pt atoms and clusters in TiO2 and CeO2 nanowires.•After activation, the Pt-doped TiO2 exhibit much enhanced mass activity for methanol electro-oxidation.•Due to the stabilization effect of metal oxides, the Pt-doped catalysts are highly stable for electrocatalysis.
doi_str_mv 10.1016/j.electacta.2018.11.200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2184094798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618326847</els_id><sourcerecordid>2184094798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3f99eb907eac7bfd49c11130ea1c386139350beef487b1b5295f81dc667a9b673</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWD_-BgOet840201yLOIXCHrQc8hmZzVlu6lJKupfb2rFqzDwLr_3ZuYxdoYwRcDmYjmlgVy2ZaYzQDVFLAp7bIJKikqoud5nEwAUVd2o5pAdpbQEANlImLD2cbDZj5sVT358GYjbHFbpwg2blCkmnrJt_eC_qON-5DnaMfnsw8hXlO3Aw4fvKPE-RE7jqx1d4X7OicHZAnwmn07YQW-HRKe_esyer6-eLm-r-4ebu8vFfeWEglyJXmtqNUiyTrZ9V2uHiALIYgEaFFrMoSXqayVbbOczPe8Vdq5ppNVtI8UxO9_lrmN421DKZhk2cSwrzQxVDbqWWhVK7igXQ0qRerOOfmXjp0Ew20LN0vwVaraFGsSiUJyLnZPKE--eoknO0_ZlHwtvuuD_zfgGK9aFRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184094798</pqid></control><display><type>article</type><title>Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gao, J.J. ; Du, P. ; Zhang, Q.H. ; Shen, X. ; Chiang, F.-K. ; Wen, Y.R. ; Lin, Xi ; Liu, X.J. ; Qiu, H.J.</creator><creatorcontrib>Gao, J.J. ; Du, P. ; Zhang, Q.H. ; Shen, X. ; Chiang, F.-K. ; Wen, Y.R. ; Lin, Xi ; Liu, X.J. ; Qiu, H.J.</creatorcontrib><description>Tunable amount of monatomic and nanoscale Pt clusters were trapped in TiO2 and CeO2 nanowires via a generic one-step dealloying approach from designed Al-Ti-Pt and Al-Ce-Pt precursor alloys. It was demonstrated that the doped Pt were in the form of both single atoms and Pt clusters stabilized in TiO2 or CeO2 nanowires. Electrochemical tests manifested that these highly dispersed Pt doped metal oxide greatly enhanced the utilization efficiency of noble metals. When used as an electrocatalyst for the methanol oxidation reaction (MOR) or hydrogen evolution reaction (HER), the Pt-TiO2 or Pt-CeO2 catalysts after activation exhibited much higher catalytic activity and stability as compared to the commercial Pt/C catalyst. The highest mass activity of the Pt0.2-TiO2 catalysts obtained from dealloying Al85Ti14.8Pt0.2 reached 1200 mA mg−1 for MOR, more than six times higher than that of Pt/C. The mass activity of the Pt0.2-CeO2 for HER is around 50 times that of Pt/C. With clear advantages of low costs, simple fabrication procedure, and enhanced catalytic performance, these Pt-metal oxide nanowires can be suitable for many catalytic reactions. •A general top-down dealloying strategy is developed to stabilize single Pt atoms and clusters in TiO2 and CeO2 nanowires.•After activation, the Pt-doped TiO2 exhibit much enhanced mass activity for methanol electro-oxidation.•Due to the stabilization effect of metal oxides, the Pt-doped catalysts are highly stable for electrocatalysis.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.11.200</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; Cerium oxides ; Clusters ; Dealloying ; Doping ; Fuel cells ; Hydrogen evolution reactions ; Metal oxides ; Nanowires ; Noble metals ; Oxidation ; Platinum ; Single atoms ; Titanium ; Titanium dioxide ; Transition metal oxides ; Transition metals ; Water splitting</subject><ispartof>Electrochimica acta, 2019-02, Vol.297, p.155-162</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Feb 20, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3f99eb907eac7bfd49c11130ea1c386139350beef487b1b5295f81dc667a9b673</citedby><cites>FETCH-LOGICAL-c380t-3f99eb907eac7bfd49c11130ea1c386139350beef487b1b5295f81dc667a9b673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468618326847$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Gao, J.J.</creatorcontrib><creatorcontrib>Du, P.</creatorcontrib><creatorcontrib>Zhang, Q.H.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Chiang, F.-K.</creatorcontrib><creatorcontrib>Wen, Y.R.</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Liu, X.J.</creatorcontrib><creatorcontrib>Qiu, H.J.</creatorcontrib><title>Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis</title><title>Electrochimica acta</title><description>Tunable amount of monatomic and nanoscale Pt clusters were trapped in TiO2 and CeO2 nanowires via a generic one-step dealloying approach from designed Al-Ti-Pt and Al-Ce-Pt precursor alloys. It was demonstrated that the doped Pt were in the form of both single atoms and Pt clusters stabilized in TiO2 or CeO2 nanowires. Electrochemical tests manifested that these highly dispersed Pt doped metal oxide greatly enhanced the utilization efficiency of noble metals. When used as an electrocatalyst for the methanol oxidation reaction (MOR) or hydrogen evolution reaction (HER), the Pt-TiO2 or Pt-CeO2 catalysts after activation exhibited much higher catalytic activity and stability as compared to the commercial Pt/C catalyst. The highest mass activity of the Pt0.2-TiO2 catalysts obtained from dealloying Al85Ti14.8Pt0.2 reached 1200 mA mg−1 for MOR, more than six times higher than that of Pt/C. The mass activity of the Pt0.2-CeO2 for HER is around 50 times that of Pt/C. With clear advantages of low costs, simple fabrication procedure, and enhanced catalytic performance, these Pt-metal oxide nanowires can be suitable for many catalytic reactions. •A general top-down dealloying strategy is developed to stabilize single Pt atoms and clusters in TiO2 and CeO2 nanowires.•After activation, the Pt-doped TiO2 exhibit much enhanced mass activity for methanol electro-oxidation.•Due to the stabilization effect of metal oxides, the Pt-doped catalysts are highly stable for electrocatalysis.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cerium oxides</subject><subject>Clusters</subject><subject>Dealloying</subject><subject>Doping</subject><subject>Fuel cells</subject><subject>Hydrogen evolution reactions</subject><subject>Metal oxides</subject><subject>Nanowires</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Single atoms</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWD_-BgOet840201yLOIXCHrQc8hmZzVlu6lJKupfb2rFqzDwLr_3ZuYxdoYwRcDmYjmlgVy2ZaYzQDVFLAp7bIJKikqoud5nEwAUVd2o5pAdpbQEANlImLD2cbDZj5sVT358GYjbHFbpwg2blCkmnrJt_eC_qON-5DnaMfnsw8hXlO3Aw4fvKPE-RE7jqx1d4X7OicHZAnwmn07YQW-HRKe_esyer6-eLm-r-4ebu8vFfeWEglyJXmtqNUiyTrZ9V2uHiALIYgEaFFrMoSXqayVbbOczPe8Vdq5ppNVtI8UxO9_lrmN421DKZhk2cSwrzQxVDbqWWhVK7igXQ0qRerOOfmXjp0Ew20LN0vwVaraFGsSiUJyLnZPKE--eoknO0_ZlHwtvuuD_zfgGK9aFRg</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Gao, J.J.</creator><creator>Du, P.</creator><creator>Zhang, Q.H.</creator><creator>Shen, X.</creator><creator>Chiang, F.-K.</creator><creator>Wen, Y.R.</creator><creator>Lin, Xi</creator><creator>Liu, X.J.</creator><creator>Qiu, H.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190220</creationdate><title>Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis</title><author>Gao, J.J. ; Du, P. ; Zhang, Q.H. ; Shen, X. ; Chiang, F.-K. ; Wen, Y.R. ; Lin, Xi ; Liu, X.J. ; Qiu, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3f99eb907eac7bfd49c11130ea1c386139350beef487b1b5295f81dc667a9b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cerium oxides</topic><topic>Clusters</topic><topic>Dealloying</topic><topic>Doping</topic><topic>Fuel cells</topic><topic>Hydrogen evolution reactions</topic><topic>Metal oxides</topic><topic>Nanowires</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Single atoms</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, J.J.</creatorcontrib><creatorcontrib>Du, P.</creatorcontrib><creatorcontrib>Zhang, Q.H.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Chiang, F.-K.</creatorcontrib><creatorcontrib>Wen, Y.R.</creatorcontrib><creatorcontrib>Lin, Xi</creatorcontrib><creatorcontrib>Liu, X.J.</creatorcontrib><creatorcontrib>Qiu, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, J.J.</au><au>Du, P.</au><au>Zhang, Q.H.</au><au>Shen, X.</au><au>Chiang, F.-K.</au><au>Wen, Y.R.</au><au>Lin, Xi</au><au>Liu, X.J.</au><au>Qiu, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis</atitle><jtitle>Electrochimica acta</jtitle><date>2019-02-20</date><risdate>2019</risdate><volume>297</volume><spage>155</spage><epage>162</epage><pages>155-162</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Tunable amount of monatomic and nanoscale Pt clusters were trapped in TiO2 and CeO2 nanowires via a generic one-step dealloying approach from designed Al-Ti-Pt and Al-Ce-Pt precursor alloys. It was demonstrated that the doped Pt were in the form of both single atoms and Pt clusters stabilized in TiO2 or CeO2 nanowires. Electrochemical tests manifested that these highly dispersed Pt doped metal oxide greatly enhanced the utilization efficiency of noble metals. When used as an electrocatalyst for the methanol oxidation reaction (MOR) or hydrogen evolution reaction (HER), the Pt-TiO2 or Pt-CeO2 catalysts after activation exhibited much higher catalytic activity and stability as compared to the commercial Pt/C catalyst. The highest mass activity of the Pt0.2-TiO2 catalysts obtained from dealloying Al85Ti14.8Pt0.2 reached 1200 mA mg−1 for MOR, more than six times higher than that of Pt/C. The mass activity of the Pt0.2-CeO2 for HER is around 50 times that of Pt/C. With clear advantages of low costs, simple fabrication procedure, and enhanced catalytic performance, these Pt-metal oxide nanowires can be suitable for many catalytic reactions. •A general top-down dealloying strategy is developed to stabilize single Pt atoms and clusters in TiO2 and CeO2 nanowires.•After activation, the Pt-doped TiO2 exhibit much enhanced mass activity for methanol electro-oxidation.•Due to the stabilization effect of metal oxides, the Pt-doped catalysts are highly stable for electrocatalysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.11.200</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-02, Vol.297, p.155-162
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2184094798
source Elsevier ScienceDirect Journals Complete
subjects Catalysis
Catalysts
Catalytic activity
Cerium oxides
Clusters
Dealloying
Doping
Fuel cells
Hydrogen evolution reactions
Metal oxides
Nanowires
Noble metals
Oxidation
Platinum
Single atoms
Titanium
Titanium dioxide
Transition metal oxides
Transition metals
Water splitting
title Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Platinum%20single%20atoms/clusters%20stabilized%20in%20transition%20metal%20oxides%20for%20enhanced%20electrocatalysis&rft.jtitle=Electrochimica%20acta&rft.au=Gao,%20J.J.&rft.date=2019-02-20&rft.volume=297&rft.spage=155&rft.epage=162&rft.pages=155-162&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.11.200&rft_dat=%3Cproquest_cross%3E2184094798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184094798&rft_id=info:pmid/&rft_els_id=S0013468618326847&rfr_iscdi=true