Multifidelity Bayesian Optimization for Binomial Output
The key idea of Bayesian optimization is replacing an expensive target function with a cheap surrogate model. By selection of an acquisition function for Bayesian optimization, we trade off between exploration and exploitation. The acquisition function typically depends on the mean and the variance...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Matyushin, Leonid Zaytsev, Alexey Alenkin, Oleg Ustuzhanin, Andrey |
description | The key idea of Bayesian optimization is replacing an expensive target function with a cheap surrogate model. By selection of an acquisition function for Bayesian optimization, we trade off between exploration and exploitation. The acquisition function typically depends on the mean and the variance of the surrogate model at a given point. The most common Gaussian process-based surrogate model assumes that the target with fixed parameters is a realization of a Gaussian process. However, often the target function doesn't satisfy this approximation. Here we consider target functions that come from the binomial distribution with the parameter that depends on inputs. Typically we can vary how many Bernoulli samples we obtain during each evaluation. We propose a general Gaussian process model that takes into account Bernoulli outputs. To make things work we consider a simple acquisition function based on Expected Improvement and a heuristic strategy to choose the number of samples at each point thus taking into account precision of the obtained output. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2183976432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183976432</sourcerecordid><originalsourceid>FETCH-proquest_journals_21839764323</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC-lN_1wriot0cS8BE7glTWpyM9Sn18EHcDrDdzYsAynLoqsAdiyPcRJCQNNCXcuMtfdkCQ0-tUVaea9WHVE5PiyEM74VoXfc-MB7dH5GZfmQaEl0YFujbNT5r3t2vF4e51uxBP9KOtI4-RTcl0YoO3lqm0qC_O_6AFP6NlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183976432</pqid></control><display><type>article</type><title>Multifidelity Bayesian Optimization for Binomial Output</title><source>Free E- Journals</source><creator>Matyushin, Leonid ; Zaytsev, Alexey ; Alenkin, Oleg ; Ustuzhanin, Andrey</creator><creatorcontrib>Matyushin, Leonid ; Zaytsev, Alexey ; Alenkin, Oleg ; Ustuzhanin, Andrey</creatorcontrib><description>The key idea of Bayesian optimization is replacing an expensive target function with a cheap surrogate model. By selection of an acquisition function for Bayesian optimization, we trade off between exploration and exploitation. The acquisition function typically depends on the mean and the variance of the surrogate model at a given point. The most common Gaussian process-based surrogate model assumes that the target with fixed parameters is a realization of a Gaussian process. However, often the target function doesn't satisfy this approximation. Here we consider target functions that come from the binomial distribution with the parameter that depends on inputs. Typically we can vary how many Bernoulli samples we obtain during each evaluation. We propose a general Gaussian process model that takes into account Bernoulli outputs. To make things work we consider a simple acquisition function based on Expected Improvement and a heuristic strategy to choose the number of samples at each point thus taking into account precision of the obtained output.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Binomial distribution ; Gaussian process ; Mathematical models ; Optimization ; Parameters</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Matyushin, Leonid</creatorcontrib><creatorcontrib>Zaytsev, Alexey</creatorcontrib><creatorcontrib>Alenkin, Oleg</creatorcontrib><creatorcontrib>Ustuzhanin, Andrey</creatorcontrib><title>Multifidelity Bayesian Optimization for Binomial Output</title><title>arXiv.org</title><description>The key idea of Bayesian optimization is replacing an expensive target function with a cheap surrogate model. By selection of an acquisition function for Bayesian optimization, we trade off between exploration and exploitation. The acquisition function typically depends on the mean and the variance of the surrogate model at a given point. The most common Gaussian process-based surrogate model assumes that the target with fixed parameters is a realization of a Gaussian process. However, often the target function doesn't satisfy this approximation. Here we consider target functions that come from the binomial distribution with the parameter that depends on inputs. Typically we can vary how many Bernoulli samples we obtain during each evaluation. We propose a general Gaussian process model that takes into account Bernoulli outputs. To make things work we consider a simple acquisition function based on Expected Improvement and a heuristic strategy to choose the number of samples at each point thus taking into account precision of the obtained output.</description><subject>Bayesian analysis</subject><subject>Binomial distribution</subject><subject>Gaussian process</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC-lN_1wriot0cS8BE7glTWpyM9Sn18EHcDrDdzYsAynLoqsAdiyPcRJCQNNCXcuMtfdkCQ0-tUVaea9WHVE5PiyEM74VoXfc-MB7dH5GZfmQaEl0YFujbNT5r3t2vF4e51uxBP9KOtI4-RTcl0YoO3lqm0qC_O_6AFP6NlE</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Matyushin, Leonid</creator><creator>Zaytsev, Alexey</creator><creator>Alenkin, Oleg</creator><creator>Ustuzhanin, Andrey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190219</creationdate><title>Multifidelity Bayesian Optimization for Binomial Output</title><author>Matyushin, Leonid ; Zaytsev, Alexey ; Alenkin, Oleg ; Ustuzhanin, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21839764323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Binomial distribution</topic><topic>Gaussian process</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Matyushin, Leonid</creatorcontrib><creatorcontrib>Zaytsev, Alexey</creatorcontrib><creatorcontrib>Alenkin, Oleg</creatorcontrib><creatorcontrib>Ustuzhanin, Andrey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matyushin, Leonid</au><au>Zaytsev, Alexey</au><au>Alenkin, Oleg</au><au>Ustuzhanin, Andrey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multifidelity Bayesian Optimization for Binomial Output</atitle><jtitle>arXiv.org</jtitle><date>2019-02-19</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The key idea of Bayesian optimization is replacing an expensive target function with a cheap surrogate model. By selection of an acquisition function for Bayesian optimization, we trade off between exploration and exploitation. The acquisition function typically depends on the mean and the variance of the surrogate model at a given point. The most common Gaussian process-based surrogate model assumes that the target with fixed parameters is a realization of a Gaussian process. However, often the target function doesn't satisfy this approximation. Here we consider target functions that come from the binomial distribution with the parameter that depends on inputs. Typically we can vary how many Bernoulli samples we obtain during each evaluation. We propose a general Gaussian process model that takes into account Bernoulli outputs. To make things work we consider a simple acquisition function based on Expected Improvement and a heuristic strategy to choose the number of samples at each point thus taking into account precision of the obtained output.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2183976432 |
source | Free E- Journals |
subjects | Bayesian analysis Binomial distribution Gaussian process Mathematical models Optimization Parameters |
title | Multifidelity Bayesian Optimization for Binomial Output |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multifidelity%20Bayesian%20Optimization%20for%20Binomial%20Output&rft.jtitle=arXiv.org&rft.au=Matyushin,%20Leonid&rft.date=2019-02-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2183976432%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183976432&rft_id=info:pmid/&rfr_iscdi=true |