Reflexivity of Newton-Okounkov bodies of partial flag varieties
Assume that the valuation semigroup \(\Gamma(\lambda)\) of an arbitrary partial flag variety corresponding to the line bundle \(\mathcal L_\lambda\) constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton-Okounkov body, whi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that the valuation semigroup \(\Gamma(\lambda)\) of an arbitrary partial flag variety corresponding to the line bundle \(\mathcal L_\lambda\) constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton-Okounkov body, which happens to be a rational, convex polytope, contains exactly one lattice point in its interior if and only if \(\mathcal L_\lambda\) is the anticanonical line bundle. Furthermore we use this unique lattice point to construct the dual polytope of the Newton-Okounkov body and prove that this dual is a lattice polytope using a result by Hibi. This leads to an unexpected, necessary and sufficient condition for the Newton-Okounkov body to be reflexive. |
---|---|
ISSN: | 2331-8422 |