Reflexivity of Newton-Okounkov bodies of partial flag varieties

Assume that the valuation semigroup \(\Gamma(\lambda)\) of an arbitrary partial flag variety corresponding to the line bundle \(\mathcal L_\lambda\) constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton-Okounkov body, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
1. Verfasser: Steinert, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume that the valuation semigroup \(\Gamma(\lambda)\) of an arbitrary partial flag variety corresponding to the line bundle \(\mathcal L_\lambda\) constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton-Okounkov body, which happens to be a rational, convex polytope, contains exactly one lattice point in its interior if and only if \(\mathcal L_\lambda\) is the anticanonical line bundle. Furthermore we use this unique lattice point to construct the dual polytope of the Newton-Okounkov body and prove that this dual is a lattice polytope using a result by Hibi. This leads to an unexpected, necessary and sufficient condition for the Newton-Okounkov body to be reflexive.
ISSN:2331-8422