Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica

Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2019-03, Vol.165 (3), p.511-523
Hauptverfasser: Sáez, Patricia L., Rivera, Betsy K., Ramírez, Constanza F., Vallejos, Valentina, Cavieres, Lohengrin A., Corcuera, Luis J., Bravo, León A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 3
container_start_page 511
container_title Physiologia plantarum
container_volume 165
creator Sáez, Patricia L.
Rivera, Betsy K.
Ramírez, Constanza F.
Vallejos, Valentina
Cavieres, Lohengrin A.
Corcuera, Luis J.
Bravo, León A.
description Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.
doi_str_mv 10.1111/ppl.12739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183948677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183948677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-223441497948764085ba0735615c12736fdf05ba0d121e9aceaad62e00d45b433</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EoqUw8ALIEhNDii-51CMq5SJVggHm6NQ5aV2lSbAdqrDw6rgU2PBi6fenz-f8hJxzNubhXLdtNeYik-qADLlUKpIsiQ_JkDHJIyV5NiAnzq0Z42nKxTEZCJUywTM2JJ-zskTtHW1K6nHTogXfWaRQF3QLHi2FdzAVLExlfE-bmlZmufIUa7TLnnY-5B_gTXgwNW1XjW9cX_sVeqNpaxuNzuG3_RadXsGmdQaC3YPVAYFTclRC5fDs5x6R17vZy_Qhmj_dP05v5pGWiVSREDKOeawyFU-yNGaTZAEsk0nKE73bPC2Lku2ygguOCjQCFKlAxoo4WcRSjsjl3htmeuvQ-XzddLYOX-aCT2TQplkWqKs9pW3jnMUyb63ZgO1zzvJd1XmoOv-uOrAXP8ZuscHij_ztNgDXe2BrKuz_N-XPz_O98gtuGons</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183948677</pqid></control><display><type>article</type><title>Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sáez, Patricia L. ; Rivera, Betsy K. ; Ramírez, Constanza F. ; Vallejos, Valentina ; Cavieres, Lohengrin A. ; Corcuera, Luis J. ; Bravo, León A.</creator><creatorcontrib>Sáez, Patricia L. ; Rivera, Betsy K. ; Ramírez, Constanza F. ; Vallejos, Valentina ; Cavieres, Lohengrin A. ; Corcuera, Luis J. ; Bravo, León A.</creatorcontrib><description>Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12739</identifier><identifier>PMID: 29602170</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal models ; Carotene ; Chlorophyll ; Climate change ; Climate change models ; Climate models ; Deschampsia antarctica ; Drought ; Electron transport ; Energy utilization ; Epoxidation ; Field capacity ; Flowers &amp; plants ; Fluorescence ; Freezing ; Long-term effects ; Photochemicals ; Photosynthesis ; Plants ; Polar environments ; Temperature ; Temperature effects ; Transport rate ; Water availability ; Water stress ; Xanthophylls ; β-Carotene</subject><ispartof>Physiologia plantarum, 2019-03, Vol.165 (3), p.511-523</ispartof><rights>2018 Scandinavian Plant Physiology Society</rights><rights>2018 Scandinavian Plant Physiology Society.</rights><rights>2019 Scandinavian Plant Physiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-223441497948764085ba0735615c12736fdf05ba0d121e9aceaad62e00d45b433</citedby><cites>FETCH-LOGICAL-c3539-223441497948764085ba0735615c12736fdf05ba0d121e9aceaad62e00d45b433</cites><orcidid>0000-0003-4705-4842 ; 0000-0001-9122-3020 ; 0000-0002-8594-7329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29602170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sáez, Patricia L.</creatorcontrib><creatorcontrib>Rivera, Betsy K.</creatorcontrib><creatorcontrib>Ramírez, Constanza F.</creatorcontrib><creatorcontrib>Vallejos, Valentina</creatorcontrib><creatorcontrib>Cavieres, Lohengrin A.</creatorcontrib><creatorcontrib>Corcuera, Luis J.</creatorcontrib><creatorcontrib>Bravo, León A.</creatorcontrib><title>Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.</description><subject>Animal models</subject><subject>Carotene</subject><subject>Chlorophyll</subject><subject>Climate change</subject><subject>Climate change models</subject><subject>Climate models</subject><subject>Deschampsia antarctica</subject><subject>Drought</subject><subject>Electron transport</subject><subject>Energy utilization</subject><subject>Epoxidation</subject><subject>Field capacity</subject><subject>Flowers &amp; plants</subject><subject>Fluorescence</subject><subject>Freezing</subject><subject>Long-term effects</subject><subject>Photochemicals</subject><subject>Photosynthesis</subject><subject>Plants</subject><subject>Polar environments</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Transport rate</subject><subject>Water availability</subject><subject>Water stress</subject><subject>Xanthophylls</subject><subject>β-Carotene</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EoqUw8ALIEhNDii-51CMq5SJVggHm6NQ5aV2lSbAdqrDw6rgU2PBi6fenz-f8hJxzNubhXLdtNeYik-qADLlUKpIsiQ_JkDHJIyV5NiAnzq0Z42nKxTEZCJUywTM2JJ-zskTtHW1K6nHTogXfWaRQF3QLHi2FdzAVLExlfE-bmlZmufIUa7TLnnY-5B_gTXgwNW1XjW9cX_sVeqNpaxuNzuG3_RadXsGmdQaC3YPVAYFTclRC5fDs5x6R17vZy_Qhmj_dP05v5pGWiVSREDKOeawyFU-yNGaTZAEsk0nKE73bPC2Lku2ygguOCjQCFKlAxoo4WcRSjsjl3htmeuvQ-XzddLYOX-aCT2TQplkWqKs9pW3jnMUyb63ZgO1zzvJd1XmoOv-uOrAXP8ZuscHij_ztNgDXe2BrKuz_N-XPz_O98gtuGons</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Sáez, Patricia L.</creator><creator>Rivera, Betsy K.</creator><creator>Ramírez, Constanza F.</creator><creator>Vallejos, Valentina</creator><creator>Cavieres, Lohengrin A.</creator><creator>Corcuera, Luis J.</creator><creator>Bravo, León A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4705-4842</orcidid><orcidid>https://orcid.org/0000-0001-9122-3020</orcidid><orcidid>https://orcid.org/0000-0002-8594-7329</orcidid></search><sort><creationdate>201903</creationdate><title>Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica</title><author>Sáez, Patricia L. ; Rivera, Betsy K. ; Ramírez, Constanza F. ; Vallejos, Valentina ; Cavieres, Lohengrin A. ; Corcuera, Luis J. ; Bravo, León A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-223441497948764085ba0735615c12736fdf05ba0d121e9aceaad62e00d45b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Carotene</topic><topic>Chlorophyll</topic><topic>Climate change</topic><topic>Climate change models</topic><topic>Climate models</topic><topic>Deschampsia antarctica</topic><topic>Drought</topic><topic>Electron transport</topic><topic>Energy utilization</topic><topic>Epoxidation</topic><topic>Field capacity</topic><topic>Flowers &amp; plants</topic><topic>Fluorescence</topic><topic>Freezing</topic><topic>Long-term effects</topic><topic>Photochemicals</topic><topic>Photosynthesis</topic><topic>Plants</topic><topic>Polar environments</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Transport rate</topic><topic>Water availability</topic><topic>Water stress</topic><topic>Xanthophylls</topic><topic>β-Carotene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sáez, Patricia L.</creatorcontrib><creatorcontrib>Rivera, Betsy K.</creatorcontrib><creatorcontrib>Ramírez, Constanza F.</creatorcontrib><creatorcontrib>Vallejos, Valentina</creatorcontrib><creatorcontrib>Cavieres, Lohengrin A.</creatorcontrib><creatorcontrib>Corcuera, Luis J.</creatorcontrib><creatorcontrib>Bravo, León A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sáez, Patricia L.</au><au>Rivera, Betsy K.</au><au>Ramírez, Constanza F.</au><au>Vallejos, Valentina</au><au>Cavieres, Lohengrin A.</au><au>Corcuera, Luis J.</au><au>Bravo, León A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2019-03</date><risdate>2019</risdate><volume>165</volume><issue>3</issue><spage>511</spage><epage>523</epage><pages>511-523</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>29602170</pmid><doi>10.1111/ppl.12739</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4705-4842</orcidid><orcidid>https://orcid.org/0000-0001-9122-3020</orcidid><orcidid>https://orcid.org/0000-0002-8594-7329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2019-03, Vol.165 (3), p.511-523
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_journals_2183948677
source Wiley Online Library Journals Frontfile Complete
subjects Animal models
Carotene
Chlorophyll
Climate change
Climate change models
Climate models
Deschampsia antarctica
Drought
Electron transport
Energy utilization
Epoxidation
Field capacity
Flowers & plants
Fluorescence
Freezing
Long-term effects
Photochemicals
Photosynthesis
Plants
Polar environments
Temperature
Temperature effects
Transport rate
Water availability
Water stress
Xanthophylls
β-Carotene
title Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20temperature%20and%20water%20availability%20on%20light%20energy%20utilization%20in%20photosynthetic%20processes%20of%20Deschampsia%20antarctica&rft.jtitle=Physiologia%20plantarum&rft.au=S%C3%A1ez,%20Patricia%20L.&rft.date=2019-03&rft.volume=165&rft.issue=3&rft.spage=511&rft.epage=523&rft.pages=511-523&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12739&rft_dat=%3Cproquest_cross%3E2183948677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183948677&rft_id=info:pmid/29602170&rfr_iscdi=true