On a multivariate regression model for rates and proportions

The paper by Johnson [Systems of frequency curves generated by the methods of translation, Biometrika 36 (2014), pp. 149-176] has introduced a very interesting univariate distribution with bounded support which is known in the statistical literature as the [Formula omitted.] class of distributions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2019-04, Vol.46 (6), p.1084-1106
Hauptverfasser: Lemonte, Artur J., Moreno–Arenas, Germán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 6
container_start_page 1084
container_title Journal of applied statistics
container_volume 46
creator Lemonte, Artur J.
Moreno–Arenas, Germán
description The paper by Johnson [Systems of frequency curves generated by the methods of translation, Biometrika 36 (2014), pp. 149-176] has introduced a very interesting univariate distribution with bounded support which is known in the statistical literature as the [Formula omitted.] class of distributions. In this paper we generalize this class of univariate distributions to the multivariate case whose marginals are [Formula omitted.] distributions. On the basis of the multivariate distribution introduced, we propose a multivariate regression model for dealing with multivariate response variables which are vectors of rates or proportions. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Monte Carlo simulation results reveal that the maximum likelihood method can be used effectively in estimating the model parameters. An application to real data is presented to show the usefulness of the multivariate regression model in practice.
doi_str_mv 10.1080/02664763.2018.1534945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183936822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183936822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-c25fb127abb714b2f96912e978804bce42a3e508b4bdfbe1ff51c1a18ab20e873</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOKc_QQh43XlOPtoUvJGhUxjsRq9D0ibS0TUzaQX_vSmbN-dcvA_vCw8h9wgrBAWPwMpSVCVfMUC1QslFLeQFWSAvoQDJ2SVZzEwxQ9fkJqU9AKgMLsjTbqCGHqZ-7H5M7MzoaHRf0aXUhYEeQut66kOkMSeJmqGlxxiOIY45Trfkyps-ubvzX5LP15eP9Vux3W3e18_bomEKx3ylt8gqY22FwjJflzUyV1dKgbCNE8xwJ0FZYVtvHXovsUGDylgGTlV8SR5OvXn7e3Jp1PswxSFPaoaK17xUjGVKnqgmhpSi8_oYu4OJvxpBz6L0vyg9i9JnUfwPIKdbEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183936822</pqid></control><display><type>article</type><title>On a multivariate regression model for rates and proportions</title><source>EBSCOhost Business Source Complete</source><creator>Lemonte, Artur J. ; Moreno–Arenas, Germán</creator><creatorcontrib>Lemonte, Artur J. ; Moreno–Arenas, Germán</creatorcontrib><description>The paper by Johnson [Systems of frequency curves generated by the methods of translation, Biometrika 36 (2014), pp. 149-176] has introduced a very interesting univariate distribution with bounded support which is known in the statistical literature as the [Formula omitted.] class of distributions. In this paper we generalize this class of univariate distributions to the multivariate case whose marginals are [Formula omitted.] distributions. On the basis of the multivariate distribution introduced, we propose a multivariate regression model for dealing with multivariate response variables which are vectors of rates or proportions. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Monte Carlo simulation results reveal that the maximum likelihood method can be used effectively in estimating the model parameters. An application to real data is presented to show the usefulness of the multivariate regression model in practice.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2018.1534945</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Ltd</publisher><subject>Computer simulation ; Economic models ; Maximum likelihood method ; Monte Carlo simulation ; Parameter estimation ; Regression models ; Statistical analysis ; Statistical methods</subject><ispartof>Journal of applied statistics, 2019-04, Vol.46 (6), p.1084-1106</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-c25fb127abb714b2f96912e978804bce42a3e508b4bdfbe1ff51c1a18ab20e873</citedby><cites>FETCH-LOGICAL-c281t-c25fb127abb714b2f96912e978804bce42a3e508b4bdfbe1ff51c1a18ab20e873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lemonte, Artur J.</creatorcontrib><creatorcontrib>Moreno–Arenas, Germán</creatorcontrib><title>On a multivariate regression model for rates and proportions</title><title>Journal of applied statistics</title><description>The paper by Johnson [Systems of frequency curves generated by the methods of translation, Biometrika 36 (2014), pp. 149-176] has introduced a very interesting univariate distribution with bounded support which is known in the statistical literature as the [Formula omitted.] class of distributions. In this paper we generalize this class of univariate distributions to the multivariate case whose marginals are [Formula omitted.] distributions. On the basis of the multivariate distribution introduced, we propose a multivariate regression model for dealing with multivariate response variables which are vectors of rates or proportions. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Monte Carlo simulation results reveal that the maximum likelihood method can be used effectively in estimating the model parameters. An application to real data is presented to show the usefulness of the multivariate regression model in practice.</description><subject>Computer simulation</subject><subject>Economic models</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhoMoOKc_QQh43XlOPtoUvJGhUxjsRq9D0ibS0TUzaQX_vSmbN-dcvA_vCw8h9wgrBAWPwMpSVCVfMUC1QslFLeQFWSAvoQDJ2SVZzEwxQ9fkJqU9AKgMLsjTbqCGHqZ-7H5M7MzoaHRf0aXUhYEeQut66kOkMSeJmqGlxxiOIY45Trfkyps-ubvzX5LP15eP9Vux3W3e18_bomEKx3ylt8gqY22FwjJflzUyV1dKgbCNE8xwJ0FZYVtvHXovsUGDylgGTlV8SR5OvXn7e3Jp1PswxSFPaoaK17xUjGVKnqgmhpSi8_oYu4OJvxpBz6L0vyg9i9JnUfwPIKdbEg</recordid><startdate>20190426</startdate><enddate>20190426</enddate><creator>Lemonte, Artur J.</creator><creator>Moreno–Arenas, Germán</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190426</creationdate><title>On a multivariate regression model for rates and proportions</title><author>Lemonte, Artur J. ; Moreno–Arenas, Germán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-c25fb127abb714b2f96912e978804bce42a3e508b4bdfbe1ff51c1a18ab20e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Economic models</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemonte, Artur J.</creatorcontrib><creatorcontrib>Moreno–Arenas, Germán</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemonte, Artur J.</au><au>Moreno–Arenas, Germán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a multivariate regression model for rates and proportions</atitle><jtitle>Journal of applied statistics</jtitle><date>2019-04-26</date><risdate>2019</risdate><volume>46</volume><issue>6</issue><spage>1084</spage><epage>1106</epage><pages>1084-1106</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>The paper by Johnson [Systems of frequency curves generated by the methods of translation, Biometrika 36 (2014), pp. 149-176] has introduced a very interesting univariate distribution with bounded support which is known in the statistical literature as the [Formula omitted.] class of distributions. In this paper we generalize this class of univariate distributions to the multivariate case whose marginals are [Formula omitted.] distributions. On the basis of the multivariate distribution introduced, we propose a multivariate regression model for dealing with multivariate response variables which are vectors of rates or proportions. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. Monte Carlo simulation results reveal that the maximum likelihood method can be used effectively in estimating the model parameters. An application to real data is presented to show the usefulness of the multivariate regression model in practice.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/02664763.2018.1534945</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2019-04, Vol.46 (6), p.1084-1106
issn 0266-4763
1360-0532
language eng
recordid cdi_proquest_journals_2183936822
source EBSCOhost Business Source Complete
subjects Computer simulation
Economic models
Maximum likelihood method
Monte Carlo simulation
Parameter estimation
Regression models
Statistical analysis
Statistical methods
title On a multivariate regression model for rates and proportions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20multivariate%20regression%20model%20for%20rates%20and%20proportions&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Lemonte,%20Artur%20J.&rft.date=2019-04-26&rft.volume=46&rft.issue=6&rft.spage=1084&rft.epage=1106&rft.pages=1084-1106&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2018.1534945&rft_dat=%3Cproquest_cross%3E2183936822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183936822&rft_id=info:pmid/&rfr_iscdi=true