Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators
We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-02, Vol.29 (2), p.023128-023128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023128 |
---|---|
container_issue | 2 |
container_start_page | 023128 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 29 |
creator | Horváth, Viktor Kutner, Daniel Jackson Zeng, Manhao Danny Epstein, Irving R. |
description | We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses. |
doi_str_mv | 10.1063/1.5082161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2183857641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187524166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</originalsourceid><addsrcrecordid>eNp90E1LwzAcBvAgitPpwS8gBS8qdObfNGl61OEbDNxBL15Cmqaus21q0g767c3YVBD0lBx-eXjyIHQCeAKYkSuYUMwjYLCDDgDzNEwYj3bXdxqHQDEeoUPnlhhjiAjdRyPiOUmAHqD5fCGdDgurP3rdqCGoTa6rwBSB66xp3qohaPvKC2X6ttJ5cKMr0zuzCl8XMjNd2bj3ITBOlVUlO2PdEdorpH9wvD3H6OXu9nn6EM6e7h-n17NQxXHahVxTDkUGjDJCCeFKqiLKI4wZhYxISLT_WSozSiKS4zTOqUwZVzlRVCuuMRmj801ua42v7jpRl05p36LRvqCIgCc0ioExT89-0aXpbePbrRXhNGExeHWxUcoa56wuRGvLWtpBABbrmQWI7czenm4T-6zW-bf82tWDyw3ww3SyK03zb9qfeGXsDxRtXpBPQX2Sug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183857641</pqid></control><display><type>article</type><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</creator><creatorcontrib>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</creatorcontrib><description>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5082161</identifier><identifier>PMID: 30823715</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Oscillators ; Synchronism</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023128-023128</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</citedby><cites>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</cites><orcidid>0000-0003-3180-4055 ; 0000-0001-9957-1521 ; 0000000199571521 ; 0000000331804055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30823715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horváth, Viktor</creatorcontrib><creatorcontrib>Kutner, Daniel Jackson</creatorcontrib><creatorcontrib>Zeng, Manhao Danny</creatorcontrib><creatorcontrib>Epstein, Irving R.</creatorcontrib><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</description><subject>Computer simulation</subject><subject>Oscillators</subject><subject>Synchronism</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcBvAgitPpwS8gBS8qdObfNGl61OEbDNxBL15Cmqaus21q0g767c3YVBD0lBx-eXjyIHQCeAKYkSuYUMwjYLCDDgDzNEwYj3bXdxqHQDEeoUPnlhhjiAjdRyPiOUmAHqD5fCGdDgurP3rdqCGoTa6rwBSB66xp3qohaPvKC2X6ttJ5cKMr0zuzCl8XMjNd2bj3ITBOlVUlO2PdEdorpH9wvD3H6OXu9nn6EM6e7h-n17NQxXHahVxTDkUGjDJCCeFKqiLKI4wZhYxISLT_WSozSiKS4zTOqUwZVzlRVCuuMRmj801ua42v7jpRl05p36LRvqCIgCc0ioExT89-0aXpbePbrRXhNGExeHWxUcoa56wuRGvLWtpBABbrmQWI7czenm4T-6zW-bf82tWDyw3ww3SyK03zb9qfeGXsDxRtXpBPQX2Sug</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Horváth, Viktor</creator><creator>Kutner, Daniel Jackson</creator><creator>Zeng, Manhao Danny</creator><creator>Epstein, Irving R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3180-4055</orcidid><orcidid>https://orcid.org/0000-0001-9957-1521</orcidid><orcidid>https://orcid.org/0000000199571521</orcidid><orcidid>https://orcid.org/0000000331804055</orcidid></search><sort><creationdate>201902</creationdate><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><author>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Oscillators</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horváth, Viktor</creatorcontrib><creatorcontrib>Kutner, Daniel Jackson</creatorcontrib><creatorcontrib>Zeng, Manhao Danny</creatorcontrib><creatorcontrib>Epstein, Irving R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horváth, Viktor</au><au>Kutner, Daniel Jackson</au><au>Zeng, Manhao Danny</au><au>Epstein, Irving R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-02</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>023128</spage><epage>023128</epage><pages>023128-023128</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30823715</pmid><doi>10.1063/1.5082161</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3180-4055</orcidid><orcidid>https://orcid.org/0000-0001-9957-1521</orcidid><orcidid>https://orcid.org/0000000199571521</orcidid><orcidid>https://orcid.org/0000000331804055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023128-023128 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2183857641 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Computer simulation Oscillators Synchronism |
title | Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-frequency%20model%20of%20strongly%20pulse-coupled%20Belousov-Zhabotinsky%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Horv%C3%A1th,%20Viktor&rft.date=2019-02&rft.volume=29&rft.issue=2&rft.spage=023128&rft.epage=023128&rft.pages=023128-023128&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5082161&rft_dat=%3Cproquest_pubme%3E2187524166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183857641&rft_id=info:pmid/30823715&rfr_iscdi=true |