Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators

We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2019-02, Vol.29 (2), p.023128-023128
Hauptverfasser: Horváth, Viktor, Kutner, Daniel Jackson, Zeng, Manhao Danny, Epstein, Irving R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023128
container_issue 2
container_start_page 023128
container_title Chaos (Woodbury, N.Y.)
container_volume 29
creator Horváth, Viktor
Kutner, Daniel Jackson
Zeng, Manhao Danny
Epstein, Irving R.
description We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.
doi_str_mv 10.1063/1.5082161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2183857641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187524166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</originalsourceid><addsrcrecordid>eNp90E1LwzAcBvAgitPpwS8gBS8qdObfNGl61OEbDNxBL15Cmqaus21q0g767c3YVBD0lBx-eXjyIHQCeAKYkSuYUMwjYLCDDgDzNEwYj3bXdxqHQDEeoUPnlhhjiAjdRyPiOUmAHqD5fCGdDgurP3rdqCGoTa6rwBSB66xp3qohaPvKC2X6ttJ5cKMr0zuzCl8XMjNd2bj3ITBOlVUlO2PdEdorpH9wvD3H6OXu9nn6EM6e7h-n17NQxXHahVxTDkUGjDJCCeFKqiLKI4wZhYxISLT_WSozSiKS4zTOqUwZVzlRVCuuMRmj801ua42v7jpRl05p36LRvqCIgCc0ioExT89-0aXpbePbrRXhNGExeHWxUcoa56wuRGvLWtpBABbrmQWI7czenm4T-6zW-bf82tWDyw3ww3SyK03zb9qfeGXsDxRtXpBPQX2Sug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183857641</pqid></control><display><type>article</type><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</creator><creatorcontrib>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</creatorcontrib><description>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5082161</identifier><identifier>PMID: 30823715</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Oscillators ; Synchronism</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023128-023128</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</citedby><cites>FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</cites><orcidid>0000-0003-3180-4055 ; 0000-0001-9957-1521 ; 0000000199571521 ; 0000000331804055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30823715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horváth, Viktor</creatorcontrib><creatorcontrib>Kutner, Daniel Jackson</creatorcontrib><creatorcontrib>Zeng, Manhao Danny</creatorcontrib><creatorcontrib>Epstein, Irving R.</creatorcontrib><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</description><subject>Computer simulation</subject><subject>Oscillators</subject><subject>Synchronism</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcBvAgitPpwS8gBS8qdObfNGl61OEbDNxBL15Cmqaus21q0g767c3YVBD0lBx-eXjyIHQCeAKYkSuYUMwjYLCDDgDzNEwYj3bXdxqHQDEeoUPnlhhjiAjdRyPiOUmAHqD5fCGdDgurP3rdqCGoTa6rwBSB66xp3qohaPvKC2X6ttJ5cKMr0zuzCl8XMjNd2bj3ITBOlVUlO2PdEdorpH9wvD3H6OXu9nn6EM6e7h-n17NQxXHahVxTDkUGjDJCCeFKqiLKI4wZhYxISLT_WSozSiKS4zTOqUwZVzlRVCuuMRmj801ua42v7jpRl05p36LRvqCIgCc0ioExT89-0aXpbePbrRXhNGExeHWxUcoa56wuRGvLWtpBABbrmQWI7czenm4T-6zW-bf82tWDyw3ww3SyK03zb9qfeGXsDxRtXpBPQX2Sug</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Horváth, Viktor</creator><creator>Kutner, Daniel Jackson</creator><creator>Zeng, Manhao Danny</creator><creator>Epstein, Irving R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3180-4055</orcidid><orcidid>https://orcid.org/0000-0001-9957-1521</orcidid><orcidid>https://orcid.org/0000000199571521</orcidid><orcidid>https://orcid.org/0000000331804055</orcidid></search><sort><creationdate>201902</creationdate><title>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</title><author>Horváth, Viktor ; Kutner, Daniel Jackson ; Zeng, Manhao Danny ; Epstein, Irving R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8e581fb165635338cacf2d200651b3a17e1069ab5323d094d5a968cd3c5ec8e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Oscillators</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horváth, Viktor</creatorcontrib><creatorcontrib>Kutner, Daniel Jackson</creatorcontrib><creatorcontrib>Zeng, Manhao Danny</creatorcontrib><creatorcontrib>Epstein, Irving R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horváth, Viktor</au><au>Kutner, Daniel Jackson</au><au>Zeng, Manhao Danny</au><au>Epstein, Irving R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-02</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>023128</spage><epage>023128</epage><pages>023128-023128</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We demonstrate that the dynamical behavior of strongly pulse-coupled Belousov-Zhabotinsky oscillators can be reproduced and predicted using a model that treats both the phase and the instantaneous frequency of the oscillators. Model parameters are extracted from the experimental data obtained using a single pulse-perturbed oscillator and are used to simulate the temporal dynamics of a system of two coupled oscillators. Our model exhibits the out-of-phase and anti-phase synchronization and the 1:N and N:M temporal patterns as well as the oscillator suppression that are observed in experiments when the inhibitory coupling is asymmetric. This approach may be adapted to other systems, such as coupled neurons, where the oscillatory dynamics is affected by strong pulses.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30823715</pmid><doi>10.1063/1.5082161</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3180-4055</orcidid><orcidid>https://orcid.org/0000-0001-9957-1521</orcidid><orcidid>https://orcid.org/0000000199571521</orcidid><orcidid>https://orcid.org/0000000331804055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023128-023128
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2183857641
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer simulation
Oscillators
Synchronism
title Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-frequency%20model%20of%20strongly%20pulse-coupled%20Belousov-Zhabotinsky%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Horv%C3%A1th,%20Viktor&rft.date=2019-02&rft.volume=29&rft.issue=2&rft.spage=023128&rft.epage=023128&rft.pages=023128-023128&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5082161&rft_dat=%3Cproquest_pubme%3E2187524166%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183857641&rft_id=info:pmid/30823715&rfr_iscdi=true