Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method
Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channe...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-01, Vol.135 (1), p.751-762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 1 |
container_start_page | 751 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 135 |
creator | Liou, Tong-Miin Wei, Tzu-Chiao Wang, Chun-Sheng |
description | Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al
2
O
3
/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al
2
O
3
fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (
Nu
) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall
Nu
enhancement of 7.06 is found relative to that of the fully developed smooth channel. |
doi_str_mv | 10.1007/s10973-018-7299-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2183728077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895039</galeid><sourcerecordid>A574895039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxa0qkbr58wF6Q-qpBydgbAPHNGrSlSJVapIzYvGwy8qGBHDS5tN3Vq5U5VBxYDTze8DjVdUnRi8YpeIyM6oErymTtWiUqvmHasU6KetGNf0R1hzrnnX0Y3WS855SqhRlq-p5HV4gF781xcdAoiPBhOjG2Q-ZYGMHppCSTMgOEoGwM8HCBKEQH4ghY5xfIMFAJm9TtDgNMJJXX3ZkNKV4C-RrHMvbhAMyQdnF4aw6dmbMcP53P60eb749XH-v737crq-v7mrLpSo16xQ1vbEbJhhjlBtl2840jerRXztsVCtbN4B10OJ0Qzu-4YOEfmjB9UxYflp9Xs59SvF5Ro96H-cU8ErdMMlFI6kQSF0s1NaMoH1wEc1aXAOgpRjAeexfdaKVqqNcoeDLOwEyBX6VrZlz1uv7n-9ZtrD4NzkncPop-cmk35pRfYhNL7FpjE0fYtMcNc2iyciGLaR_z_6_6A_15psd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183728077</pqid></control><display><type>article</type><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><source>Springer Nature - Complete Springer Journals</source><creator>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</creator><creatorcontrib>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</creatorcontrib><description>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al
2
O
3
/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al
2
O
3
fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (
Nu
) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall
Nu
enhancement of 7.06 is found relative to that of the fully developed smooth channel.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7299-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum oxide ; Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Core flow ; Distribution functions ; Fluid flow ; Heat transfer ; Inorganic Chemistry ; Investigations ; Laminar heat transfer ; Louvers ; Mathematical models ; Measurement Science and Instrumentation ; Methods ; Microchannels ; Microstructure ; Nanofluids ; Nanoparticles ; Physical Chemistry ; Polymer Sciences ; Pressure loss ; Probability distributions ; Reynolds number ; Two dimensional flow</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (1), p.751-762</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</citedby><cites>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</cites><orcidid>0000-0002-8208-7255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-018-7299-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-018-7299-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liou, Tong-Miin</creatorcontrib><creatorcontrib>Wei, Tzu-Chiao</creatorcontrib><creatorcontrib>Wang, Chun-Sheng</creatorcontrib><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al
2
O
3
/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al
2
O
3
fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (
Nu
) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall
Nu
enhancement of 7.06 is found relative to that of the fully developed smooth channel.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Core flow</subject><subject>Distribution functions</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Laminar heat transfer</subject><subject>Louvers</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Methods</subject><subject>Microchannels</subject><subject>Microstructure</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pressure loss</subject><subject>Probability distributions</subject><subject>Reynolds number</subject><subject>Two dimensional flow</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v3CAQxa0qkbr58wF6Q-qpBydgbAPHNGrSlSJVapIzYvGwy8qGBHDS5tN3Vq5U5VBxYDTze8DjVdUnRi8YpeIyM6oErymTtWiUqvmHasU6KetGNf0R1hzrnnX0Y3WS855SqhRlq-p5HV4gF781xcdAoiPBhOjG2Q-ZYGMHppCSTMgOEoGwM8HCBKEQH4ghY5xfIMFAJm9TtDgNMJJXX3ZkNKV4C-RrHMvbhAMyQdnF4aw6dmbMcP53P60eb749XH-v737crq-v7mrLpSo16xQ1vbEbJhhjlBtl2840jerRXztsVCtbN4B10OJ0Qzu-4YOEfmjB9UxYflp9Xs59SvF5Ro96H-cU8ErdMMlFI6kQSF0s1NaMoH1wEc1aXAOgpRjAeexfdaKVqqNcoeDLOwEyBX6VrZlz1uv7n-9ZtrD4NzkncPop-cmk35pRfYhNL7FpjE0fYtMcNc2iyciGLaR_z_6_6A_15psd</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Liou, Tong-Miin</creator><creator>Wei, Tzu-Chiao</creator><creator>Wang, Chun-Sheng</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-8208-7255</orcidid></search><sort><creationdate>20190101</creationdate><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><author>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Core flow</topic><topic>Distribution functions</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Laminar heat transfer</topic><topic>Louvers</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Methods</topic><topic>Microchannels</topic><topic>Microstructure</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pressure loss</topic><topic>Probability distributions</topic><topic>Reynolds number</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liou, Tong-Miin</creatorcontrib><creatorcontrib>Wei, Tzu-Chiao</creatorcontrib><creatorcontrib>Wang, Chun-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liou, Tong-Miin</au><au>Wei, Tzu-Chiao</au><au>Wang, Chun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>1</issue><spage>751</spage><epage>762</epage><pages>751-762</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al
2
O
3
/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al
2
O
3
fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (
Nu
) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall
Nu
enhancement of 7.06 is found relative to that of the fully developed smooth channel.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-018-7299-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8208-7255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (1), p.751-762 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2183728077 |
source | Springer Nature - Complete Springer Journals |
subjects | Aluminum oxide Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Computational fluid dynamics Computer simulation Convective heat transfer Core flow Distribution functions Fluid flow Heat transfer Inorganic Chemistry Investigations Laminar heat transfer Louvers Mathematical models Measurement Science and Instrumentation Methods Microchannels Microstructure Nanofluids Nanoparticles Physical Chemistry Polymer Sciences Pressure loss Probability distributions Reynolds number Two dimensional flow |
title | Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20nanofluids%20on%20heat%20transfer%20enhancement%20in%20a%20louvered%20microchannel%20with%20lattice%20Boltzmann%20method&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Liou,%20Tong-Miin&rft.date=2019-01-01&rft.volume=135&rft.issue=1&rft.spage=751&rft.epage=762&rft.pages=751-762&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7299-3&rft_dat=%3Cgale_proqu%3EA574895039%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183728077&rft_id=info:pmid/&rft_galeid=A574895039&rfr_iscdi=true |