Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method

Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2019-01, Vol.135 (1), p.751-762
Hauptverfasser: Liou, Tong-Miin, Wei, Tzu-Chiao, Wang, Chun-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 1
container_start_page 751
container_title Journal of thermal analysis and calorimetry
container_volume 135
creator Liou, Tong-Miin
Wei, Tzu-Chiao
Wang, Chun-Sheng
description Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al 2 O 3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number ( Nu ) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.
doi_str_mv 10.1007/s10973-018-7299-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2183728077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895039</galeid><sourcerecordid>A574895039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxa0qkbr58wF6Q-qpBydgbAPHNGrSlSJVapIzYvGwy8qGBHDS5tN3Vq5U5VBxYDTze8DjVdUnRi8YpeIyM6oErymTtWiUqvmHasU6KetGNf0R1hzrnnX0Y3WS855SqhRlq-p5HV4gF781xcdAoiPBhOjG2Q-ZYGMHppCSTMgOEoGwM8HCBKEQH4ghY5xfIMFAJm9TtDgNMJJXX3ZkNKV4C-RrHMvbhAMyQdnF4aw6dmbMcP53P60eb749XH-v737crq-v7mrLpSo16xQ1vbEbJhhjlBtl2840jerRXztsVCtbN4B10OJ0Qzu-4YOEfmjB9UxYflp9Xs59SvF5Ro96H-cU8ErdMMlFI6kQSF0s1NaMoH1wEc1aXAOgpRjAeexfdaKVqqNcoeDLOwEyBX6VrZlz1uv7n-9ZtrD4NzkncPop-cmk35pRfYhNL7FpjE0fYtMcNc2iyciGLaR_z_6_6A_15psd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183728077</pqid></control><display><type>article</type><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><source>Springer Nature - Complete Springer Journals</source><creator>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</creator><creatorcontrib>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</creatorcontrib><description>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al 2 O 3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number ( Nu ) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7299-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum oxide ; Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Core flow ; Distribution functions ; Fluid flow ; Heat transfer ; Inorganic Chemistry ; Investigations ; Laminar heat transfer ; Louvers ; Mathematical models ; Measurement Science and Instrumentation ; Methods ; Microchannels ; Microstructure ; Nanofluids ; Nanoparticles ; Physical Chemistry ; Polymer Sciences ; Pressure loss ; Probability distributions ; Reynolds number ; Two dimensional flow</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (1), p.751-762</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</citedby><cites>FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</cites><orcidid>0000-0002-8208-7255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-018-7299-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-018-7299-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liou, Tong-Miin</creatorcontrib><creatorcontrib>Wei, Tzu-Chiao</creatorcontrib><creatorcontrib>Wang, Chun-Sheng</creatorcontrib><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al 2 O 3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number ( Nu ) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.</description><subject>Aluminum oxide</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Core flow</subject><subject>Distribution functions</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Laminar heat transfer</subject><subject>Louvers</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Methods</subject><subject>Microchannels</subject><subject>Microstructure</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pressure loss</subject><subject>Probability distributions</subject><subject>Reynolds number</subject><subject>Two dimensional flow</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v3CAQxa0qkbr58wF6Q-qpBydgbAPHNGrSlSJVapIzYvGwy8qGBHDS5tN3Vq5U5VBxYDTze8DjVdUnRi8YpeIyM6oErymTtWiUqvmHasU6KetGNf0R1hzrnnX0Y3WS855SqhRlq-p5HV4gF781xcdAoiPBhOjG2Q-ZYGMHppCSTMgOEoGwM8HCBKEQH4ghY5xfIMFAJm9TtDgNMJJXX3ZkNKV4C-RrHMvbhAMyQdnF4aw6dmbMcP53P60eb749XH-v737crq-v7mrLpSo16xQ1vbEbJhhjlBtl2840jerRXztsVCtbN4B10OJ0Qzu-4YOEfmjB9UxYflp9Xs59SvF5Ro96H-cU8ErdMMlFI6kQSF0s1NaMoH1wEc1aXAOgpRjAeexfdaKVqqNcoeDLOwEyBX6VrZlz1uv7n-9ZtrD4NzkncPop-cmk35pRfYhNL7FpjE0fYtMcNc2iyciGLaR_z_6_6A_15psd</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Liou, Tong-Miin</creator><creator>Wei, Tzu-Chiao</creator><creator>Wang, Chun-Sheng</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-8208-7255</orcidid></search><sort><creationdate>20190101</creationdate><title>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</title><author>Liou, Tong-Miin ; Wei, Tzu-Chiao ; Wang, Chun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-1590a6acb1711103a9c45a22967294db9484fdecfe4103b053b3d8e6d4ef617c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Core flow</topic><topic>Distribution functions</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Laminar heat transfer</topic><topic>Louvers</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Methods</topic><topic>Microchannels</topic><topic>Microstructure</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pressure loss</topic><topic>Probability distributions</topic><topic>Reynolds number</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liou, Tong-Miin</creatorcontrib><creatorcontrib>Wei, Tzu-Chiao</creatorcontrib><creatorcontrib>Wang, Chun-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liou, Tong-Miin</au><au>Wei, Tzu-Chiao</au><au>Wang, Chun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>1</issue><spage>751</spage><epage>762</epage><pages>751-762</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al 2 O 3 /water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al 2 O 3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number ( Nu ) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-018-7299-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8208-7255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (1), p.751-762
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2183728077
source Springer Nature - Complete Springer Journals
subjects Aluminum oxide
Analysis
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Computational fluid dynamics
Computer simulation
Convective heat transfer
Core flow
Distribution functions
Fluid flow
Heat transfer
Inorganic Chemistry
Investigations
Laminar heat transfer
Louvers
Mathematical models
Measurement Science and Instrumentation
Methods
Microchannels
Microstructure
Nanofluids
Nanoparticles
Physical Chemistry
Polymer Sciences
Pressure loss
Probability distributions
Reynolds number
Two dimensional flow
title Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20nanofluids%20on%20heat%20transfer%20enhancement%20in%20a%20louvered%20microchannel%20with%20lattice%20Boltzmann%20method&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Liou,%20Tong-Miin&rft.date=2019-01-01&rft.volume=135&rft.issue=1&rft.spage=751&rft.epage=762&rft.pages=751-762&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7299-3&rft_dat=%3Cgale_proqu%3EA574895039%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183728077&rft_id=info:pmid/&rft_galeid=A574895039&rfr_iscdi=true