Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory
Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each na...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-01, Vol.135 (2), p.1185-1196 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1196 |
---|---|
container_issue | 2 |
container_start_page | 1185 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 135 |
creator | Zareei, Maliheh Yoozbashizadeh, Hossein Madaah Hosseini, Hamid Reza |
description | Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves. |
doi_str_mv | 10.1007/s10973-018-7620-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2183727885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895184</galeid><sourcerecordid>A574895184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoEmaH9CboKdAvJGstSUdQz6ahYVA83EVsjxyFLzSRpLT7iH_vXJdCDkEHTSI55kZ8RbFd4IXBGN2FgkWjJaY8JI1FS7Jl-KA1JyXlaiavVzTXDekxl-LwxifMcZCYHJQvK3cK8Rke5Ws61F6AgTGgE4ReYO2N6cojsEonZRLSLkOWe-sRjEFcH16Qt79c2JSrR1s2k2WGsaNderst0oQkFPOm2G0XURjnGZcrh9vJ8mH3bdi36ghwvH_-6h4uL66v7gp17c_Vxfn61JTLlK5pIIKMB2wRitiaNuJtmlawXQF0OoaQwNYgzCUE6aquqGYU0aWwuiaCbakR8WPue82-Jcx_1c--zG4PFJWJKMV47zO1GKmejWAtM74FJTOp4ON1d6Bsfn9vGZLLmrCp7YnH4TMJPiTejXGKFd3vz6yZGZ18DEGMHIb7EaFnSRYThHKOUKZI5RThJJkp5qdmFnXQ3hf-3PpL4E8ntY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183727885</pqid></control><display><type>article</type><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><source>SpringerLink Journals</source><creator>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</creator><creatorcontrib>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</creatorcontrib><description>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7620-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum compounds ; Aluminum oxide ; Analytical Chemistry ; Carbonates ; Chemistry ; Chemistry and Materials Science ; Comparative analysis ; Inorganic Chemistry ; Investigations ; Ions ; Measurement Science and Instrumentation ; Nanofluids ; Nanoparticles ; Particle size ; Physical Chemistry ; Polymer Sciences ; Povidone ; Stability analysis ; Sulfates ; Surface active agents ; Surfactants ; Turbidity ; Zeta potential</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1185-1196</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</citedby><cites>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-018-7620-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-018-7620-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zareei, Maliheh</creatorcontrib><creatorcontrib>Yoozbashizadeh, Hossein</creatorcontrib><creatorcontrib>Madaah Hosseini, Hamid Reza</creatorcontrib><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</description><subject>Aluminum compounds</subject><subject>Aluminum oxide</subject><subject>Analytical Chemistry</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Comparative analysis</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Povidone</subject><subject>Stability analysis</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>Surfactants</subject><subject>Turbidity</subject><subject>Zeta potential</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhk1JoEmaH9CboKdAvJGstSUdQz6ahYVA83EVsjxyFLzSRpLT7iH_vXJdCDkEHTSI55kZ8RbFd4IXBGN2FgkWjJaY8JI1FS7Jl-KA1JyXlaiavVzTXDekxl-LwxifMcZCYHJQvK3cK8Rke5Ws61F6AgTGgE4ReYO2N6cojsEonZRLSLkOWe-sRjEFcH16Qt79c2JSrR1s2k2WGsaNderst0oQkFPOm2G0XURjnGZcrh9vJ8mH3bdi36ghwvH_-6h4uL66v7gp17c_Vxfn61JTLlK5pIIKMB2wRitiaNuJtmlawXQF0OoaQwNYgzCUE6aquqGYU0aWwuiaCbakR8WPue82-Jcx_1c--zG4PFJWJKMV47zO1GKmejWAtM74FJTOp4ON1d6Bsfn9vGZLLmrCp7YnH4TMJPiTejXGKFd3vz6yZGZ18DEGMHIb7EaFnSRYThHKOUKZI5RThJJkp5qdmFnXQ3hf-3PpL4E8ntY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zareei, Maliheh</creator><creator>Yoozbashizadeh, Hossein</creator><creator>Madaah Hosseini, Hamid Reza</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190101</creationdate><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><author>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum compounds</topic><topic>Aluminum oxide</topic><topic>Analytical Chemistry</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Comparative analysis</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Povidone</topic><topic>Stability analysis</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>Surfactants</topic><topic>Turbidity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zareei, Maliheh</creatorcontrib><creatorcontrib>Yoozbashizadeh, Hossein</creatorcontrib><creatorcontrib>Madaah Hosseini, Hamid Reza</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zareei, Maliheh</au><au>Yoozbashizadeh, Hossein</au><au>Madaah Hosseini, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>2</issue><spage>1185</spage><epage>1196</epage><pages>1185-1196</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-018-7620-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1185-1196 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2183727885 |
source | SpringerLink Journals |
subjects | Aluminum compounds Aluminum oxide Analytical Chemistry Carbonates Chemistry Chemistry and Materials Science Comparative analysis Inorganic Chemistry Investigations Ions Measurement Science and Instrumentation Nanofluids Nanoparticles Particle size Physical Chemistry Polymer Sciences Povidone Stability analysis Sulfates Surface active agents Surfactants Turbidity Zeta potential |
title | Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effects%20of%20pH,%20surfactant%20and%20ionic%20strength%20on%20the%20stability%20of%20alumina/water%20nanofluids%20using%20DLVO%20theory&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Zareei,%20Maliheh&rft.date=2019-01-01&rft.volume=135&rft.issue=2&rft.spage=1185&rft.epage=1196&rft.pages=1185-1196&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7620-1&rft_dat=%3Cgale_proqu%3EA574895184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183727885&rft_id=info:pmid/&rft_galeid=A574895184&rfr_iscdi=true |