Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2019-01, Vol.135 (2), p.1185-1196
Hauptverfasser: Zareei, Maliheh, Yoozbashizadeh, Hossein, Madaah Hosseini, Hamid Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1196
container_issue 2
container_start_page 1185
container_title Journal of thermal analysis and calorimetry
container_volume 135
creator Zareei, Maliheh
Yoozbashizadeh, Hossein
Madaah Hosseini, Hamid Reza
description Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.
doi_str_mv 10.1007/s10973-018-7620-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2183727885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895184</galeid><sourcerecordid>A574895184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoEmaH9CboKdAvJGstSUdQz6ahYVA83EVsjxyFLzSRpLT7iH_vXJdCDkEHTSI55kZ8RbFd4IXBGN2FgkWjJaY8JI1FS7Jl-KA1JyXlaiavVzTXDekxl-LwxifMcZCYHJQvK3cK8Rke5Ws61F6AgTGgE4ReYO2N6cojsEonZRLSLkOWe-sRjEFcH16Qt79c2JSrR1s2k2WGsaNderst0oQkFPOm2G0XURjnGZcrh9vJ8mH3bdi36ghwvH_-6h4uL66v7gp17c_Vxfn61JTLlK5pIIKMB2wRitiaNuJtmlawXQF0OoaQwNYgzCUE6aquqGYU0aWwuiaCbakR8WPue82-Jcx_1c--zG4PFJWJKMV47zO1GKmejWAtM74FJTOp4ON1d6Bsfn9vGZLLmrCp7YnH4TMJPiTejXGKFd3vz6yZGZ18DEGMHIb7EaFnSRYThHKOUKZI5RThJJkp5qdmFnXQ3hf-3PpL4E8ntY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183727885</pqid></control><display><type>article</type><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><source>SpringerLink Journals</source><creator>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</creator><creatorcontrib>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</creatorcontrib><description>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7620-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum compounds ; Aluminum oxide ; Analytical Chemistry ; Carbonates ; Chemistry ; Chemistry and Materials Science ; Comparative analysis ; Inorganic Chemistry ; Investigations ; Ions ; Measurement Science and Instrumentation ; Nanofluids ; Nanoparticles ; Particle size ; Physical Chemistry ; Polymer Sciences ; Povidone ; Stability analysis ; Sulfates ; Surface active agents ; Surfactants ; Turbidity ; Zeta potential</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1185-1196</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</citedby><cites>FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-018-7620-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-018-7620-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zareei, Maliheh</creatorcontrib><creatorcontrib>Yoozbashizadeh, Hossein</creatorcontrib><creatorcontrib>Madaah Hosseini, Hamid Reza</creatorcontrib><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</description><subject>Aluminum compounds</subject><subject>Aluminum oxide</subject><subject>Analytical Chemistry</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Comparative analysis</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Povidone</subject><subject>Stability analysis</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>Surfactants</subject><subject>Turbidity</subject><subject>Zeta potential</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhk1JoEmaH9CboKdAvJGstSUdQz6ahYVA83EVsjxyFLzSRpLT7iH_vXJdCDkEHTSI55kZ8RbFd4IXBGN2FgkWjJaY8JI1FS7Jl-KA1JyXlaiavVzTXDekxl-LwxifMcZCYHJQvK3cK8Rke5Ws61F6AgTGgE4ReYO2N6cojsEonZRLSLkOWe-sRjEFcH16Qt79c2JSrR1s2k2WGsaNderst0oQkFPOm2G0XURjnGZcrh9vJ8mH3bdi36ghwvH_-6h4uL66v7gp17c_Vxfn61JTLlK5pIIKMB2wRitiaNuJtmlawXQF0OoaQwNYgzCUE6aquqGYU0aWwuiaCbakR8WPue82-Jcx_1c--zG4PFJWJKMV47zO1GKmejWAtM74FJTOp4ON1d6Bsfn9vGZLLmrCp7YnH4TMJPiTejXGKFd3vz6yZGZ18DEGMHIb7EaFnSRYThHKOUKZI5RThJJkp5qdmFnXQ3hf-3PpL4E8ntY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zareei, Maliheh</creator><creator>Yoozbashizadeh, Hossein</creator><creator>Madaah Hosseini, Hamid Reza</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190101</creationdate><title>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</title><author>Zareei, Maliheh ; Yoozbashizadeh, Hossein ; Madaah Hosseini, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-43939efde76ca1f3bd9b66b97c2eebc50e6e0ce9f3817a25630837149fc579743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum compounds</topic><topic>Aluminum oxide</topic><topic>Analytical Chemistry</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Comparative analysis</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Povidone</topic><topic>Stability analysis</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>Surfactants</topic><topic>Turbidity</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zareei, Maliheh</creatorcontrib><creatorcontrib>Yoozbashizadeh, Hossein</creatorcontrib><creatorcontrib>Madaah Hosseini, Hamid Reza</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zareei, Maliheh</au><au>Yoozbashizadeh, Hossein</au><au>Madaah Hosseini, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>2</issue><spage>1185</spage><epage>1196</epage><pages>1185-1196</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-018-7620-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1185-1196
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2183727885
source SpringerLink Journals
subjects Aluminum compounds
Aluminum oxide
Analytical Chemistry
Carbonates
Chemistry
Chemistry and Materials Science
Comparative analysis
Inorganic Chemistry
Investigations
Ions
Measurement Science and Instrumentation
Nanofluids
Nanoparticles
Particle size
Physical Chemistry
Polymer Sciences
Povidone
Stability analysis
Sulfates
Surface active agents
Surfactants
Turbidity
Zeta potential
title Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effects%20of%20pH,%20surfactant%20and%20ionic%20strength%20on%20the%20stability%20of%20alumina/water%20nanofluids%20using%20DLVO%20theory&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Zareei,%20Maliheh&rft.date=2019-01-01&rft.volume=135&rft.issue=2&rft.spage=1185&rft.epage=1196&rft.pages=1185-1196&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7620-1&rft_dat=%3Cgale_proqu%3EA574895184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183727885&rft_id=info:pmid/&rft_galeid=A574895184&rfr_iscdi=true