Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2019-02, Vol.85 (3)
Hauptverfasser: Scott, Kathleen M, Leonard, Juliana M, Boden, Rich, Chaput, Dale, Dennison, Clare, Haller, Edward, Harmer, Tara L, Anderson, Abigail, Arnold, Tiffany, Budenstein, Samantha, Brown, Rikki, Brand, Juan, Byers, Jacob, Calarco, Jeanette, Campbell, Timothy, Carter, Erica, Chase, Max, Cole, Montana, Dwyer, Deandra, Grasham, Jonathon, Hanni, Christopher, Hazle, Ashlee, Johnson, Cody, Johnson, Ryan, Kirby, Brandi, Lewis, Katherine, Neumann, Brianna, Nguyen, Tracy, Charari, Jonathon Nino, Morakinyo, Ooreoluwa, Olsson, Bengt, Roundtree, Shanetta, Skjerve, Emily, Ubaldini, Ashley, Whittaker, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied and environmental microbiology
container_volume 85
creator Scott, Kathleen M
Leonard, Juliana M
Boden, Rich
Chaput, Dale
Dennison, Clare
Haller, Edward
Harmer, Tara L
Anderson, Abigail
Arnold, Tiffany
Budenstein, Samantha
Brown, Rikki
Brand, Juan
Byers, Jacob
Calarco, Jeanette
Campbell, Timothy
Carter, Erica
Chase, Max
Cole, Montana
Dwyer, Deandra
Grasham, Jonathon
Hanni, Christopher
Hazle, Ashlee
Johnson, Cody
Johnson, Ryan
Kirby, Brandi
Lewis, Katherine
Neumann, Brianna
Nguyen, Tracy
Charari, Jonathon Nino
Morakinyo, Ooreoluwa
Olsson, Bengt
Roundtree, Shanetta
Skjerve, Emily
Ubaldini, Ashley
Whittaker, Robert
description Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.
doi_str_mv 10.1128/AEM.02096-18
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2183621150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183621150</sourcerecordid><originalsourceid>FETCH-proquest_journals_21836211503</originalsourceid><addsrcrecordid>eNqNjs1Kw0AURgdRMP7sfIALbps6M2lDspRY7aa4sOKuZZJMO7ckc9P5qfTZfDkrCG5dHTjnW3yM3Qk-FkIWD4-zxZhLXuapKM5YInhZpNMsy89ZwnlZplJO-CW78n7HOZ_wvEjY1xMetPMYjoAWqteVjzXIVVqRbbQNTgW0W1joxiiLvvegejqJyuieOgyGVAwUHA3Gw8ZRD8FoeNFWOwXzY-toqy0dsHZII1gapB4bR86ouo1-BMq2f9YP6NQI3mvcRwwU_c-lt9htsMUG5qrGoIKHD3Jd-4mtvmEXG9V5ffvLa3b_PFtW83RwtI_ah_WOorOntJaiyHIpxJRn_1t9A7XSbU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183621150</pqid></control><display><type>article</type><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</creator><creatorcontrib>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</creatorcontrib><description>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02096-18</identifier><language>eng</language><publisher>Washington: American Society for Microbiology</publisher><subject>Carbon ; Carbonic anhydrase ; Carbonic anhydrases ; Centrifugation ; Chromosomes ; Coastal ecology ; Dissolved inorganic carbon ; E coli ; Electron micrographs ; Gene expression ; Gene sequencing ; Genes ; Genomes ; Homology ; Hydrothermal plumes ; Hydrothermal vents ; Lake sediments ; Lakes ; Loci ; Proteins ; Reverse transcription ; Sediments ; Silicones ; Substrates ; Vents</subject><ispartof>Applied and environmental microbiology, 2019-02, Vol.85 (3)</ispartof><rights>Copyright American Society for Microbiology Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Scott, Kathleen M</creatorcontrib><creatorcontrib>Leonard, Juliana M</creatorcontrib><creatorcontrib>Boden, Rich</creatorcontrib><creatorcontrib>Chaput, Dale</creatorcontrib><creatorcontrib>Dennison, Clare</creatorcontrib><creatorcontrib>Haller, Edward</creatorcontrib><creatorcontrib>Harmer, Tara L</creatorcontrib><creatorcontrib>Anderson, Abigail</creatorcontrib><creatorcontrib>Arnold, Tiffany</creatorcontrib><creatorcontrib>Budenstein, Samantha</creatorcontrib><creatorcontrib>Brown, Rikki</creatorcontrib><creatorcontrib>Brand, Juan</creatorcontrib><creatorcontrib>Byers, Jacob</creatorcontrib><creatorcontrib>Calarco, Jeanette</creatorcontrib><creatorcontrib>Campbell, Timothy</creatorcontrib><creatorcontrib>Carter, Erica</creatorcontrib><creatorcontrib>Chase, Max</creatorcontrib><creatorcontrib>Cole, Montana</creatorcontrib><creatorcontrib>Dwyer, Deandra</creatorcontrib><creatorcontrib>Grasham, Jonathon</creatorcontrib><creatorcontrib>Hanni, Christopher</creatorcontrib><creatorcontrib>Hazle, Ashlee</creatorcontrib><creatorcontrib>Johnson, Cody</creatorcontrib><creatorcontrib>Johnson, Ryan</creatorcontrib><creatorcontrib>Kirby, Brandi</creatorcontrib><creatorcontrib>Lewis, Katherine</creatorcontrib><creatorcontrib>Neumann, Brianna</creatorcontrib><creatorcontrib>Nguyen, Tracy</creatorcontrib><creatorcontrib>Charari, Jonathon Nino</creatorcontrib><creatorcontrib>Morakinyo, Ooreoluwa</creatorcontrib><creatorcontrib>Olsson, Bengt</creatorcontrib><creatorcontrib>Roundtree, Shanetta</creatorcontrib><creatorcontrib>Skjerve, Emily</creatorcontrib><creatorcontrib>Ubaldini, Ashley</creatorcontrib><creatorcontrib>Whittaker, Robert</creatorcontrib><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><title>Applied and environmental microbiology</title><description>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</description><subject>Carbon</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Centrifugation</subject><subject>Chromosomes</subject><subject>Coastal ecology</subject><subject>Dissolved inorganic carbon</subject><subject>E coli</subject><subject>Electron micrographs</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Homology</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal vents</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Loci</subject><subject>Proteins</subject><subject>Reverse transcription</subject><subject>Sediments</subject><subject>Silicones</subject><subject>Substrates</subject><subject>Vents</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjs1Kw0AURgdRMP7sfIALbps6M2lDspRY7aa4sOKuZZJMO7ckc9P5qfTZfDkrCG5dHTjnW3yM3Qk-FkIWD4-zxZhLXuapKM5YInhZpNMsy89ZwnlZplJO-CW78n7HOZ_wvEjY1xMetPMYjoAWqteVjzXIVVqRbbQNTgW0W1joxiiLvvegejqJyuieOgyGVAwUHA3Gw8ZRD8FoeNFWOwXzY-toqy0dsHZII1gapB4bR86ouo1-BMq2f9YP6NQI3mvcRwwU_c-lt9htsMUG5qrGoIKHD3Jd-4mtvmEXG9V5ffvLa3b_PFtW83RwtI_ah_WOorOntJaiyHIpxJRn_1t9A7XSbU8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Scott, Kathleen M</creator><creator>Leonard, Juliana M</creator><creator>Boden, Rich</creator><creator>Chaput, Dale</creator><creator>Dennison, Clare</creator><creator>Haller, Edward</creator><creator>Harmer, Tara L</creator><creator>Anderson, Abigail</creator><creator>Arnold, Tiffany</creator><creator>Budenstein, Samantha</creator><creator>Brown, Rikki</creator><creator>Brand, Juan</creator><creator>Byers, Jacob</creator><creator>Calarco, Jeanette</creator><creator>Campbell, Timothy</creator><creator>Carter, Erica</creator><creator>Chase, Max</creator><creator>Cole, Montana</creator><creator>Dwyer, Deandra</creator><creator>Grasham, Jonathon</creator><creator>Hanni, Christopher</creator><creator>Hazle, Ashlee</creator><creator>Johnson, Cody</creator><creator>Johnson, Ryan</creator><creator>Kirby, Brandi</creator><creator>Lewis, Katherine</creator><creator>Neumann, Brianna</creator><creator>Nguyen, Tracy</creator><creator>Charari, Jonathon Nino</creator><creator>Morakinyo, Ooreoluwa</creator><creator>Olsson, Bengt</creator><creator>Roundtree, Shanetta</creator><creator>Skjerve, Emily</creator><creator>Ubaldini, Ashley</creator><creator>Whittaker, Robert</creator><general>American Society for Microbiology</general><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20190201</creationdate><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><author>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21836211503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Centrifugation</topic><topic>Chromosomes</topic><topic>Coastal ecology</topic><topic>Dissolved inorganic carbon</topic><topic>E coli</topic><topic>Electron micrographs</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Homology</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal vents</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Loci</topic><topic>Proteins</topic><topic>Reverse transcription</topic><topic>Sediments</topic><topic>Silicones</topic><topic>Substrates</topic><topic>Vents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Kathleen M</creatorcontrib><creatorcontrib>Leonard, Juliana M</creatorcontrib><creatorcontrib>Boden, Rich</creatorcontrib><creatorcontrib>Chaput, Dale</creatorcontrib><creatorcontrib>Dennison, Clare</creatorcontrib><creatorcontrib>Haller, Edward</creatorcontrib><creatorcontrib>Harmer, Tara L</creatorcontrib><creatorcontrib>Anderson, Abigail</creatorcontrib><creatorcontrib>Arnold, Tiffany</creatorcontrib><creatorcontrib>Budenstein, Samantha</creatorcontrib><creatorcontrib>Brown, Rikki</creatorcontrib><creatorcontrib>Brand, Juan</creatorcontrib><creatorcontrib>Byers, Jacob</creatorcontrib><creatorcontrib>Calarco, Jeanette</creatorcontrib><creatorcontrib>Campbell, Timothy</creatorcontrib><creatorcontrib>Carter, Erica</creatorcontrib><creatorcontrib>Chase, Max</creatorcontrib><creatorcontrib>Cole, Montana</creatorcontrib><creatorcontrib>Dwyer, Deandra</creatorcontrib><creatorcontrib>Grasham, Jonathon</creatorcontrib><creatorcontrib>Hanni, Christopher</creatorcontrib><creatorcontrib>Hazle, Ashlee</creatorcontrib><creatorcontrib>Johnson, Cody</creatorcontrib><creatorcontrib>Johnson, Ryan</creatorcontrib><creatorcontrib>Kirby, Brandi</creatorcontrib><creatorcontrib>Lewis, Katherine</creatorcontrib><creatorcontrib>Neumann, Brianna</creatorcontrib><creatorcontrib>Nguyen, Tracy</creatorcontrib><creatorcontrib>Charari, Jonathon Nino</creatorcontrib><creatorcontrib>Morakinyo, Ooreoluwa</creatorcontrib><creatorcontrib>Olsson, Bengt</creatorcontrib><creatorcontrib>Roundtree, Shanetta</creatorcontrib><creatorcontrib>Skjerve, Emily</creatorcontrib><creatorcontrib>Ubaldini, Ashley</creatorcontrib><creatorcontrib>Whittaker, Robert</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Kathleen M</au><au>Leonard, Juliana M</au><au>Boden, Rich</au><au>Chaput, Dale</au><au>Dennison, Clare</au><au>Haller, Edward</au><au>Harmer, Tara L</au><au>Anderson, Abigail</au><au>Arnold, Tiffany</au><au>Budenstein, Samantha</au><au>Brown, Rikki</au><au>Brand, Juan</au><au>Byers, Jacob</au><au>Calarco, Jeanette</au><au>Campbell, Timothy</au><au>Carter, Erica</au><au>Chase, Max</au><au>Cole, Montana</au><au>Dwyer, Deandra</au><au>Grasham, Jonathon</au><au>Hanni, Christopher</au><au>Hazle, Ashlee</au><au>Johnson, Cody</au><au>Johnson, Ryan</au><au>Kirby, Brandi</au><au>Lewis, Katherine</au><au>Neumann, Brianna</au><au>Nguyen, Tracy</au><au>Charari, Jonathon Nino</au><au>Morakinyo, Ooreoluwa</au><au>Olsson, Bengt</au><au>Roundtree, Shanetta</au><au>Skjerve, Emily</au><au>Ubaldini, Ashley</au><au>Whittaker, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</atitle><jtitle>Applied and environmental microbiology</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>85</volume><issue>3</issue><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</abstract><cop>Washington</cop><pub>American Society for Microbiology</pub><doi>10.1128/AEM.02096-18</doi></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2019-02, Vol.85 (3)
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_journals_2183621150
source American Society for Microbiology; PubMed Central; Alma/SFX Local Collection
subjects Carbon
Carbonic anhydrase
Carbonic anhydrases
Centrifugation
Chromosomes
Coastal ecology
Dissolved inorganic carbon
E coli
Electron micrographs
Gene expression
Gene sequencing
Genes
Genomes
Homology
Hydrothermal plumes
Hydrothermal vents
Lake sediments
Lakes
Loci
Proteins
Reverse transcription
Sediments
Silicones
Substrates
Vents
title Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20in%20CO%5Esub%202%5E-Concentrating%20Mechanisms%20among%20Chemolithoautotrophs%20from%20the%20Genera%20Hydrogenovibrio,%20Thiomicrorhabdus,%20and%20Thiomicrospira,%20Ubiquitous%20in%20Sulfidic%20Habitats%20Worldwide&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Scott,%20Kathleen%20M&rft.date=2019-02-01&rft.volume=85&rft.issue=3&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.02096-18&rft_dat=%3Cproquest%3E2183621150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183621150&rft_id=info:pmid/&rfr_iscdi=true