Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide
Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2019-02, Vol.85 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied and environmental microbiology |
container_volume | 85 |
creator | Scott, Kathleen M Leonard, Juliana M Boden, Rich Chaput, Dale Dennison, Clare Haller, Edward Harmer, Tara L Anderson, Abigail Arnold, Tiffany Budenstein, Samantha Brown, Rikki Brand, Juan Byers, Jacob Calarco, Jeanette Campbell, Timothy Carter, Erica Chase, Max Cole, Montana Dwyer, Deandra Grasham, Jonathon Hanni, Christopher Hazle, Ashlee Johnson, Cody Johnson, Ryan Kirby, Brandi Lewis, Katherine Neumann, Brianna Nguyen, Tracy Charari, Jonathon Nino Morakinyo, Ooreoluwa Olsson, Bengt Roundtree, Shanetta Skjerve, Emily Ubaldini, Ashley Whittaker, Robert |
description | Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family. |
doi_str_mv | 10.1128/AEM.02096-18 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2183621150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183621150</sourcerecordid><originalsourceid>FETCH-proquest_journals_21836211503</originalsourceid><addsrcrecordid>eNqNjs1Kw0AURgdRMP7sfIALbps6M2lDspRY7aa4sOKuZZJMO7ckc9P5qfTZfDkrCG5dHTjnW3yM3Qk-FkIWD4-zxZhLXuapKM5YInhZpNMsy89ZwnlZplJO-CW78n7HOZ_wvEjY1xMetPMYjoAWqteVjzXIVVqRbbQNTgW0W1joxiiLvvegejqJyuieOgyGVAwUHA3Gw8ZRD8FoeNFWOwXzY-toqy0dsHZII1gapB4bR86ouo1-BMq2f9YP6NQI3mvcRwwU_c-lt9htsMUG5qrGoIKHD3Jd-4mtvmEXG9V5ffvLa3b_PFtW83RwtI_ah_WOorOntJaiyHIpxJRn_1t9A7XSbU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183621150</pqid></control><display><type>article</type><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</creator><creatorcontrib>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</creatorcontrib><description>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02096-18</identifier><language>eng</language><publisher>Washington: American Society for Microbiology</publisher><subject>Carbon ; Carbonic anhydrase ; Carbonic anhydrases ; Centrifugation ; Chromosomes ; Coastal ecology ; Dissolved inorganic carbon ; E coli ; Electron micrographs ; Gene expression ; Gene sequencing ; Genes ; Genomes ; Homology ; Hydrothermal plumes ; Hydrothermal vents ; Lake sediments ; Lakes ; Loci ; Proteins ; Reverse transcription ; Sediments ; Silicones ; Substrates ; Vents</subject><ispartof>Applied and environmental microbiology, 2019-02, Vol.85 (3)</ispartof><rights>Copyright American Society for Microbiology Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Scott, Kathleen M</creatorcontrib><creatorcontrib>Leonard, Juliana M</creatorcontrib><creatorcontrib>Boden, Rich</creatorcontrib><creatorcontrib>Chaput, Dale</creatorcontrib><creatorcontrib>Dennison, Clare</creatorcontrib><creatorcontrib>Haller, Edward</creatorcontrib><creatorcontrib>Harmer, Tara L</creatorcontrib><creatorcontrib>Anderson, Abigail</creatorcontrib><creatorcontrib>Arnold, Tiffany</creatorcontrib><creatorcontrib>Budenstein, Samantha</creatorcontrib><creatorcontrib>Brown, Rikki</creatorcontrib><creatorcontrib>Brand, Juan</creatorcontrib><creatorcontrib>Byers, Jacob</creatorcontrib><creatorcontrib>Calarco, Jeanette</creatorcontrib><creatorcontrib>Campbell, Timothy</creatorcontrib><creatorcontrib>Carter, Erica</creatorcontrib><creatorcontrib>Chase, Max</creatorcontrib><creatorcontrib>Cole, Montana</creatorcontrib><creatorcontrib>Dwyer, Deandra</creatorcontrib><creatorcontrib>Grasham, Jonathon</creatorcontrib><creatorcontrib>Hanni, Christopher</creatorcontrib><creatorcontrib>Hazle, Ashlee</creatorcontrib><creatorcontrib>Johnson, Cody</creatorcontrib><creatorcontrib>Johnson, Ryan</creatorcontrib><creatorcontrib>Kirby, Brandi</creatorcontrib><creatorcontrib>Lewis, Katherine</creatorcontrib><creatorcontrib>Neumann, Brianna</creatorcontrib><creatorcontrib>Nguyen, Tracy</creatorcontrib><creatorcontrib>Charari, Jonathon Nino</creatorcontrib><creatorcontrib>Morakinyo, Ooreoluwa</creatorcontrib><creatorcontrib>Olsson, Bengt</creatorcontrib><creatorcontrib>Roundtree, Shanetta</creatorcontrib><creatorcontrib>Skjerve, Emily</creatorcontrib><creatorcontrib>Ubaldini, Ashley</creatorcontrib><creatorcontrib>Whittaker, Robert</creatorcontrib><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><title>Applied and environmental microbiology</title><description>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</description><subject>Carbon</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Centrifugation</subject><subject>Chromosomes</subject><subject>Coastal ecology</subject><subject>Dissolved inorganic carbon</subject><subject>E coli</subject><subject>Electron micrographs</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Homology</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal vents</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Loci</subject><subject>Proteins</subject><subject>Reverse transcription</subject><subject>Sediments</subject><subject>Silicones</subject><subject>Substrates</subject><subject>Vents</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjs1Kw0AURgdRMP7sfIALbps6M2lDspRY7aa4sOKuZZJMO7ckc9P5qfTZfDkrCG5dHTjnW3yM3Qk-FkIWD4-zxZhLXuapKM5YInhZpNMsy89ZwnlZplJO-CW78n7HOZ_wvEjY1xMetPMYjoAWqteVjzXIVVqRbbQNTgW0W1joxiiLvvegejqJyuieOgyGVAwUHA3Gw8ZRD8FoeNFWOwXzY-toqy0dsHZII1gapB4bR86ouo1-BMq2f9YP6NQI3mvcRwwU_c-lt9htsMUG5qrGoIKHD3Jd-4mtvmEXG9V5ffvLa3b_PFtW83RwtI_ah_WOorOntJaiyHIpxJRn_1t9A7XSbU8</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Scott, Kathleen M</creator><creator>Leonard, Juliana M</creator><creator>Boden, Rich</creator><creator>Chaput, Dale</creator><creator>Dennison, Clare</creator><creator>Haller, Edward</creator><creator>Harmer, Tara L</creator><creator>Anderson, Abigail</creator><creator>Arnold, Tiffany</creator><creator>Budenstein, Samantha</creator><creator>Brown, Rikki</creator><creator>Brand, Juan</creator><creator>Byers, Jacob</creator><creator>Calarco, Jeanette</creator><creator>Campbell, Timothy</creator><creator>Carter, Erica</creator><creator>Chase, Max</creator><creator>Cole, Montana</creator><creator>Dwyer, Deandra</creator><creator>Grasham, Jonathon</creator><creator>Hanni, Christopher</creator><creator>Hazle, Ashlee</creator><creator>Johnson, Cody</creator><creator>Johnson, Ryan</creator><creator>Kirby, Brandi</creator><creator>Lewis, Katherine</creator><creator>Neumann, Brianna</creator><creator>Nguyen, Tracy</creator><creator>Charari, Jonathon Nino</creator><creator>Morakinyo, Ooreoluwa</creator><creator>Olsson, Bengt</creator><creator>Roundtree, Shanetta</creator><creator>Skjerve, Emily</creator><creator>Ubaldini, Ashley</creator><creator>Whittaker, Robert</creator><general>American Society for Microbiology</general><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20190201</creationdate><title>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</title><author>Scott, Kathleen M ; Leonard, Juliana M ; Boden, Rich ; Chaput, Dale ; Dennison, Clare ; Haller, Edward ; Harmer, Tara L ; Anderson, Abigail ; Arnold, Tiffany ; Budenstein, Samantha ; Brown, Rikki ; Brand, Juan ; Byers, Jacob ; Calarco, Jeanette ; Campbell, Timothy ; Carter, Erica ; Chase, Max ; Cole, Montana ; Dwyer, Deandra ; Grasham, Jonathon ; Hanni, Christopher ; Hazle, Ashlee ; Johnson, Cody ; Johnson, Ryan ; Kirby, Brandi ; Lewis, Katherine ; Neumann, Brianna ; Nguyen, Tracy ; Charari, Jonathon Nino ; Morakinyo, Ooreoluwa ; Olsson, Bengt ; Roundtree, Shanetta ; Skjerve, Emily ; Ubaldini, Ashley ; Whittaker, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21836211503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Centrifugation</topic><topic>Chromosomes</topic><topic>Coastal ecology</topic><topic>Dissolved inorganic carbon</topic><topic>E coli</topic><topic>Electron micrographs</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Homology</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal vents</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Loci</topic><topic>Proteins</topic><topic>Reverse transcription</topic><topic>Sediments</topic><topic>Silicones</topic><topic>Substrates</topic><topic>Vents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Kathleen M</creatorcontrib><creatorcontrib>Leonard, Juliana M</creatorcontrib><creatorcontrib>Boden, Rich</creatorcontrib><creatorcontrib>Chaput, Dale</creatorcontrib><creatorcontrib>Dennison, Clare</creatorcontrib><creatorcontrib>Haller, Edward</creatorcontrib><creatorcontrib>Harmer, Tara L</creatorcontrib><creatorcontrib>Anderson, Abigail</creatorcontrib><creatorcontrib>Arnold, Tiffany</creatorcontrib><creatorcontrib>Budenstein, Samantha</creatorcontrib><creatorcontrib>Brown, Rikki</creatorcontrib><creatorcontrib>Brand, Juan</creatorcontrib><creatorcontrib>Byers, Jacob</creatorcontrib><creatorcontrib>Calarco, Jeanette</creatorcontrib><creatorcontrib>Campbell, Timothy</creatorcontrib><creatorcontrib>Carter, Erica</creatorcontrib><creatorcontrib>Chase, Max</creatorcontrib><creatorcontrib>Cole, Montana</creatorcontrib><creatorcontrib>Dwyer, Deandra</creatorcontrib><creatorcontrib>Grasham, Jonathon</creatorcontrib><creatorcontrib>Hanni, Christopher</creatorcontrib><creatorcontrib>Hazle, Ashlee</creatorcontrib><creatorcontrib>Johnson, Cody</creatorcontrib><creatorcontrib>Johnson, Ryan</creatorcontrib><creatorcontrib>Kirby, Brandi</creatorcontrib><creatorcontrib>Lewis, Katherine</creatorcontrib><creatorcontrib>Neumann, Brianna</creatorcontrib><creatorcontrib>Nguyen, Tracy</creatorcontrib><creatorcontrib>Charari, Jonathon Nino</creatorcontrib><creatorcontrib>Morakinyo, Ooreoluwa</creatorcontrib><creatorcontrib>Olsson, Bengt</creatorcontrib><creatorcontrib>Roundtree, Shanetta</creatorcontrib><creatorcontrib>Skjerve, Emily</creatorcontrib><creatorcontrib>Ubaldini, Ashley</creatorcontrib><creatorcontrib>Whittaker, Robert</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Kathleen M</au><au>Leonard, Juliana M</au><au>Boden, Rich</au><au>Chaput, Dale</au><au>Dennison, Clare</au><au>Haller, Edward</au><au>Harmer, Tara L</au><au>Anderson, Abigail</au><au>Arnold, Tiffany</au><au>Budenstein, Samantha</au><au>Brown, Rikki</au><au>Brand, Juan</au><au>Byers, Jacob</au><au>Calarco, Jeanette</au><au>Campbell, Timothy</au><au>Carter, Erica</au><au>Chase, Max</au><au>Cole, Montana</au><au>Dwyer, Deandra</au><au>Grasham, Jonathon</au><au>Hanni, Christopher</au><au>Hazle, Ashlee</au><au>Johnson, Cody</au><au>Johnson, Ryan</au><au>Kirby, Brandi</au><au>Lewis, Katherine</au><au>Neumann, Brianna</au><au>Nguyen, Tracy</au><au>Charari, Jonathon Nino</au><au>Morakinyo, Ooreoluwa</au><au>Olsson, Bengt</au><au>Roundtree, Shanetta</au><au>Skjerve, Emily</au><au>Ubaldini, Ashley</au><au>Whittaker, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide</atitle><jtitle>Applied and environmental microbiology</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>85</volume><issue>3</issue><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli. The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.</abstract><cop>Washington</cop><pub>American Society for Microbiology</pub><doi>10.1128/AEM.02096-18</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2019-02, Vol.85 (3) |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_journals_2183621150 |
source | American Society for Microbiology; PubMed Central; Alma/SFX Local Collection |
subjects | Carbon Carbonic anhydrase Carbonic anhydrases Centrifugation Chromosomes Coastal ecology Dissolved inorganic carbon E coli Electron micrographs Gene expression Gene sequencing Genes Genomes Homology Hydrothermal plumes Hydrothermal vents Lake sediments Lakes Loci Proteins Reverse transcription Sediments Silicones Substrates Vents |
title | Diversity in CO^sub 2^-Concentrating Mechanisms among Chemolithoautotrophs from the Genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, Ubiquitous in Sulfidic Habitats Worldwide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20in%20CO%5Esub%202%5E-Concentrating%20Mechanisms%20among%20Chemolithoautotrophs%20from%20the%20Genera%20Hydrogenovibrio,%20Thiomicrorhabdus,%20and%20Thiomicrospira,%20Ubiquitous%20in%20Sulfidic%20Habitats%20Worldwide&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Scott,%20Kathleen%20M&rft.date=2019-02-01&rft.volume=85&rft.issue=3&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.02096-18&rft_dat=%3Cproquest%3E2183621150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183621150&rft_id=info:pmid/&rfr_iscdi=true |