Stability and metallization of solid oxygen under high pressure

The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the \(P6_3/mmc\) symmetry (\(\eta^{'}\) phase) is determined to be thermodynamically stable in this pressure range at elevat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Elatresh, S F, Bonev, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Elatresh, S F
Bonev, S A
description The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the \(P6_3/mmc\) symmetry (\(\eta^{'}\) phase) is determined to be thermodynamically stable in this pressure range at elevated temperatures above the \(\epsilon\)(\({O_8}\)) phase. Long-standing disagreements between theory and experiment for the stability of \(\epsilon\)(\({O_8}\)), its metallic character, and the transition pressure to the \(\zeta\) oxygen phase are resolved. Crucial for obtaining these results are the inclusion of anharmonic lattice dynamics effects and accurate calculations of exchange interactions in the presence of thermal disorder.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2183395774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183395774</sourcerecordid><originalsourceid>FETCH-proquest_journals_21833957743</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPzxwLrRJa-vkIIq77iWS1zYlJjUvAevX6-AHON3h3AVLuBBF1pScr1hKNOZ5znc1ryqRsMM1yLs2OswgrYIHBmmMfsugnQXXATmjFbjX3KOFaBV6GHQ_wOSRKHrcsGUnDWH665ptz6fb8ZJN3j0jUmhHF739UsuLRoh9Vdel-O_6AD8BOUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183395774</pqid></control><display><type>article</type><title>Stability and metallization of solid oxygen under high pressure</title><source>Free E- Journals</source><creator>Elatresh, S F ; Bonev, S A</creator><creatorcontrib>Elatresh, S F ; Bonev, S A</creatorcontrib><description>The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the \(P6_3/mmc\) symmetry (\(\eta^{'}\) phase) is determined to be thermodynamically stable in this pressure range at elevated temperatures above the \(\epsilon\)(\({O_8}\)) phase. Long-standing disagreements between theory and experiment for the stability of \(\epsilon\)(\({O_8}\)), its metallic character, and the transition pressure to the \(\zeta\) oxygen phase are resolved. Crucial for obtaining these results are the inclusion of anharmonic lattice dynamics effects and accurate calculations of exchange interactions in the presence of thermal disorder.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anharmonicity ; First principles ; High temperature ; Metallizing ; Molecular structure ; Oxygen ; Phase diagrams ; Stability ; Transition pressure</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Elatresh, S F</creatorcontrib><creatorcontrib>Bonev, S A</creatorcontrib><title>Stability and metallization of solid oxygen under high pressure</title><title>arXiv.org</title><description>The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the \(P6_3/mmc\) symmetry (\(\eta^{'}\) phase) is determined to be thermodynamically stable in this pressure range at elevated temperatures above the \(\epsilon\)(\({O_8}\)) phase. Long-standing disagreements between theory and experiment for the stability of \(\epsilon\)(\({O_8}\)), its metallic character, and the transition pressure to the \(\zeta\) oxygen phase are resolved. Crucial for obtaining these results are the inclusion of anharmonic lattice dynamics effects and accurate calculations of exchange interactions in the presence of thermal disorder.</description><subject>Anharmonicity</subject><subject>First principles</subject><subject>High temperature</subject><subject>Metallizing</subject><subject>Molecular structure</subject><subject>Oxygen</subject><subject>Phase diagrams</subject><subject>Stability</subject><subject>Transition pressure</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPzxwLrRJa-vkIIq77iWS1zYlJjUvAevX6-AHON3h3AVLuBBF1pScr1hKNOZ5znc1ryqRsMM1yLs2OswgrYIHBmmMfsugnQXXATmjFbjX3KOFaBV6GHQ_wOSRKHrcsGUnDWH665ptz6fb8ZJN3j0jUmhHF739UsuLRoh9Vdel-O_6AD8BOUw</recordid><startdate>20190218</startdate><enddate>20190218</enddate><creator>Elatresh, S F</creator><creator>Bonev, S A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190218</creationdate><title>Stability and metallization of solid oxygen under high pressure</title><author>Elatresh, S F ; Bonev, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21833957743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anharmonicity</topic><topic>First principles</topic><topic>High temperature</topic><topic>Metallizing</topic><topic>Molecular structure</topic><topic>Oxygen</topic><topic>Phase diagrams</topic><topic>Stability</topic><topic>Transition pressure</topic><toplevel>online_resources</toplevel><creatorcontrib>Elatresh, S F</creatorcontrib><creatorcontrib>Bonev, S A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elatresh, S F</au><au>Bonev, S A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability and metallization of solid oxygen under high pressure</atitle><jtitle>arXiv.org</jtitle><date>2019-02-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the \(P6_3/mmc\) symmetry (\(\eta^{'}\) phase) is determined to be thermodynamically stable in this pressure range at elevated temperatures above the \(\epsilon\)(\({O_8}\)) phase. Long-standing disagreements between theory and experiment for the stability of \(\epsilon\)(\({O_8}\)), its metallic character, and the transition pressure to the \(\zeta\) oxygen phase are resolved. Crucial for obtaining these results are the inclusion of anharmonic lattice dynamics effects and accurate calculations of exchange interactions in the presence of thermal disorder.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2183395774
source Free E- Journals
subjects Anharmonicity
First principles
High temperature
Metallizing
Molecular structure
Oxygen
Phase diagrams
Stability
Transition pressure
title Stability and metallization of solid oxygen under high pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20and%20metallization%20of%20solid%20oxygen%20under%20high%20pressure&rft.jtitle=arXiv.org&rft.au=Elatresh,%20S%20F&rft.date=2019-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2183395774%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183395774&rft_id=info:pmid/&rfr_iscdi=true