Spherical fuzzy sets and spherical fuzzy TOPSIS method
All the extensions of ordinary fuzzy sets with three dimensional membership functions such as intuitionistic fuzzy sets (IFS), intuitionistic fuzzy sets of second type (IFS2), and neutrosophic fuzzy sets (NFS) aim at defining the judgments of decision makers/ experts with a more detailed description...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.36 (1), p.337-352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 1 |
container_start_page | 337 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 36 |
creator | Kutlu Gündoğdu, Fatma Kahraman, Cengiz |
description | All the extensions of ordinary fuzzy sets with three dimensional membership functions such as intuitionistic fuzzy sets (IFS), intuitionistic fuzzy sets of second type (IFS2), and neutrosophic fuzzy sets (NFS) aim at defining the judgments of decision makers/ experts with a more detailed description. Introduction of generalized three dimensional spherical fuzzy sets (SFS) including some essential differences from the other fuzzy sets is presented in this paper. The new type of fuzzy sets is based on the spherical fuzzy distances which have been already defined in the literature. Arithmetic operations involving addition, subtraction and multiplication are presented together with their proofs. Aggregation operators, score and accuracy functions are developed. The multi-criteria decision making method TOPSIS is extended to spherical fuzzy TOPSIS and an illustrative example is presented. Additionally, a comparative analysis with intuitionistic fuzzy TOPSIS (IF-TOPSIS) is given. |
doi_str_mv | 10.3233/JIFS-181401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183315744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183315744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8a2441a486a38632d5573626a56ab431f95701d01411803a72a413c56bf9190d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AYhBdRsFZP_oGAR1l93333K0cptkYKFVLPyzYftKVt4m56aH-9KfHkaQZmmIGHsUeEFxJEr5_ZNOdoUQJesRFao7hNtbnuPWjJUUh9y-5i3AKgUQJGTOftugqbwu-S-ng-n5JYdTHxhzKJ_4Ll4ivP8mRfdeumvGc3td_F6uFPx-x7-r6cfPD5YpZN3ua8IKCOWy-kRC-t9mQ1iVIpQ1por7RfScI6VQawBJSIFsgb4SVSofSqTjGFksbsadhtQ_NzrGLnts0xHPpLJ9ASoTJS9q3noVWEJsZQ1a4Nm70PJ4fgLmDcBYwbwNAvrVFSWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183315744</pqid></control><display><type>article</type><title>Spherical fuzzy sets and spherical fuzzy TOPSIS method</title><source>EBSCOhost Business Source Complete</source><creator>Kutlu Gündoğdu, Fatma ; Kahraman, Cengiz</creator><creatorcontrib>Kutlu Gündoğdu, Fatma ; Kahraman, Cengiz</creatorcontrib><description>All the extensions of ordinary fuzzy sets with three dimensional membership functions such as intuitionistic fuzzy sets (IFS), intuitionistic fuzzy sets of second type (IFS2), and neutrosophic fuzzy sets (NFS) aim at defining the judgments of decision makers/ experts with a more detailed description. Introduction of generalized three dimensional spherical fuzzy sets (SFS) including some essential differences from the other fuzzy sets is presented in this paper. The new type of fuzzy sets is based on the spherical fuzzy distances which have been already defined in the literature. Arithmetic operations involving addition, subtraction and multiplication are presented together with their proofs. Aggregation operators, score and accuracy functions are developed. The multi-criteria decision making method TOPSIS is extended to spherical fuzzy TOPSIS and an illustrative example is presented. Additionally, a comparative analysis with intuitionistic fuzzy TOPSIS (IF-TOPSIS) is given.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-181401</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Decision making ; Fuzzy sets ; Judgments ; Multiple criterion ; Subtraction</subject><ispartof>Journal of intelligent & fuzzy systems, 2019-01, Vol.36 (1), p.337-352</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-8a2441a486a38632d5573626a56ab431f95701d01411803a72a413c56bf9190d3</citedby><cites>FETCH-LOGICAL-c303t-8a2441a486a38632d5573626a56ab431f95701d01411803a72a413c56bf9190d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Kutlu Gündoğdu, Fatma</creatorcontrib><creatorcontrib>Kahraman, Cengiz</creatorcontrib><title>Spherical fuzzy sets and spherical fuzzy TOPSIS method</title><title>Journal of intelligent & fuzzy systems</title><description>All the extensions of ordinary fuzzy sets with three dimensional membership functions such as intuitionistic fuzzy sets (IFS), intuitionistic fuzzy sets of second type (IFS2), and neutrosophic fuzzy sets (NFS) aim at defining the judgments of decision makers/ experts with a more detailed description. Introduction of generalized three dimensional spherical fuzzy sets (SFS) including some essential differences from the other fuzzy sets is presented in this paper. The new type of fuzzy sets is based on the spherical fuzzy distances which have been already defined in the literature. Arithmetic operations involving addition, subtraction and multiplication are presented together with their proofs. Aggregation operators, score and accuracy functions are developed. The multi-criteria decision making method TOPSIS is extended to spherical fuzzy TOPSIS and an illustrative example is presented. Additionally, a comparative analysis with intuitionistic fuzzy TOPSIS (IF-TOPSIS) is given.</description><subject>Decision making</subject><subject>Fuzzy sets</subject><subject>Judgments</subject><subject>Multiple criterion</subject><subject>Subtraction</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AYhBdRsFZP_oGAR1l93333K0cptkYKFVLPyzYftKVt4m56aH-9KfHkaQZmmIGHsUeEFxJEr5_ZNOdoUQJesRFao7hNtbnuPWjJUUh9y-5i3AKgUQJGTOftugqbwu-S-ng-n5JYdTHxhzKJ_4Ll4ivP8mRfdeumvGc3td_F6uFPx-x7-r6cfPD5YpZN3ua8IKCOWy-kRC-t9mQ1iVIpQ1por7RfScI6VQawBJSIFsgb4SVSofSqTjGFksbsadhtQ_NzrGLnts0xHPpLJ9ASoTJS9q3noVWEJsZQ1a4Nm70PJ4fgLmDcBYwbwNAvrVFSWQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kutlu Gündoğdu, Fatma</creator><creator>Kahraman, Cengiz</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Spherical fuzzy sets and spherical fuzzy TOPSIS method</title><author>Kutlu Gündoğdu, Fatma ; Kahraman, Cengiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8a2441a486a38632d5573626a56ab431f95701d01411803a72a413c56bf9190d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decision making</topic><topic>Fuzzy sets</topic><topic>Judgments</topic><topic>Multiple criterion</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutlu Gündoğdu, Fatma</creatorcontrib><creatorcontrib>Kahraman, Cengiz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu Gündoğdu, Fatma</au><au>Kahraman, Cengiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical fuzzy sets and spherical fuzzy TOPSIS method</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>36</volume><issue>1</issue><spage>337</spage><epage>352</epage><pages>337-352</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>All the extensions of ordinary fuzzy sets with three dimensional membership functions such as intuitionistic fuzzy sets (IFS), intuitionistic fuzzy sets of second type (IFS2), and neutrosophic fuzzy sets (NFS) aim at defining the judgments of decision makers/ experts with a more detailed description. Introduction of generalized three dimensional spherical fuzzy sets (SFS) including some essential differences from the other fuzzy sets is presented in this paper. The new type of fuzzy sets is based on the spherical fuzzy distances which have been already defined in the literature. Arithmetic operations involving addition, subtraction and multiplication are presented together with their proofs. Aggregation operators, score and accuracy functions are developed. The multi-criteria decision making method TOPSIS is extended to spherical fuzzy TOPSIS and an illustrative example is presented. Additionally, a comparative analysis with intuitionistic fuzzy TOPSIS (IF-TOPSIS) is given.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-181401</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2019-01, Vol.36 (1), p.337-352 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2183315744 |
source | EBSCOhost Business Source Complete |
subjects | Decision making Fuzzy sets Judgments Multiple criterion Subtraction |
title | Spherical fuzzy sets and spherical fuzzy TOPSIS method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20fuzzy%20sets%20and%20spherical%20fuzzy%20TOPSIS%20method&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Kutlu%20G%C3%BCndo%C4%9Fdu,%20Fatma&rft.date=2019-01-01&rft.volume=36&rft.issue=1&rft.spage=337&rft.epage=352&rft.pages=337-352&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-181401&rft_dat=%3Cproquest_cross%3E2183315744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183315744&rft_id=info:pmid/&rfr_iscdi=true |