High temperature nano-indentation of tungsten: Modelling and experimental validation

It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113
Hauptverfasser: Xiao, Xiazi, Terentyev, D., Ruiz, A., Zinovev, A., Bakaev, A., Zhurkin, E.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue
container_start_page 106
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 743
creator Xiao, Xiazi
Terentyev, D.
Ruiz, A.
Zinovev, A.
Bakaev, A.
Zhurkin, E.E.
description It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.
doi_str_mv 10.1016/j.msea.2018.11.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183153504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318316058</els_id><sourcerecordid>2183153504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMSf47Hw4iAVVQJGKWMpsOfalOEqdYjsV_HtSyoxuuOV97l49hFwDzYBCedtl24AqYxREBpDRqj4hMxAVT_Oal6dkRmsGaUFrfk4uQugopZDTYkbWS7v5SCJud-hVHD0mTrkhtc6giyrawSVDm8TRbUJEd5e8Dgb73rpNopxJ8GvC7PYQ7ZO96q35RS7JWav6gFd_e07enx7Xi2W6ent-WTysUs2ZiGnJyqI2VakqA1SLnOumKabRrG1y3XLFSi0aoMgpKwwUWOa6VkbR1lRClILPyc3x7s4PnyOGKLth9G56KRkIDgUvaD6l2DGl_RCCx1bups7Kf0ug8mBPdvJgTx7sSQA52Zug-yOEU_-9RS-Dtug0GutRR2kG-x_-AxKcebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183153504</pqid></control><display><type>article</type><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</creator><creatorcontrib>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</creatorcontrib><description>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.11.079</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Computer simulation ; CPFEM ; Dislocations ; Ductile-brittle transition ; Energetic particles ; Finite element method ; Fracture mechanics ; Hall-Petch ; High temperature ; Load distribution (forces) ; Mechanical tests ; Nanoindentation ; Plastic deformation ; Plastic zones ; Stress concentration ; Thermomechanical treatment ; Transition temperature ; Tungsten</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 16, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</citedby><cites>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</cites><orcidid>0000-0002-1332-5125 ; 0000-0002-2657-645X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318316058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Ruiz, A.</creatorcontrib><creatorcontrib>Zinovev, A.</creatorcontrib><creatorcontrib>Bakaev, A.</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</description><subject>Computer simulation</subject><subject>CPFEM</subject><subject>Dislocations</subject><subject>Ductile-brittle transition</subject><subject>Energetic particles</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Hall-Petch</subject><subject>High temperature</subject><subject>Load distribution (forces)</subject><subject>Mechanical tests</subject><subject>Nanoindentation</subject><subject>Plastic deformation</subject><subject>Plastic zones</subject><subject>Stress concentration</subject><subject>Thermomechanical treatment</subject><subject>Transition temperature</subject><subject>Tungsten</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMSf47Hw4iAVVQJGKWMpsOfalOEqdYjsV_HtSyoxuuOV97l49hFwDzYBCedtl24AqYxREBpDRqj4hMxAVT_Oal6dkRmsGaUFrfk4uQugopZDTYkbWS7v5SCJud-hVHD0mTrkhtc6giyrawSVDm8TRbUJEd5e8Dgb73rpNopxJ8GvC7PYQ7ZO96q35RS7JWav6gFd_e07enx7Xi2W6ent-WTysUs2ZiGnJyqI2VakqA1SLnOumKabRrG1y3XLFSi0aoMgpKwwUWOa6VkbR1lRClILPyc3x7s4PnyOGKLth9G56KRkIDgUvaD6l2DGl_RCCx1bups7Kf0ug8mBPdvJgTx7sSQA52Zug-yOEU_-9RS-Dtug0GutRR2kG-x_-AxKcebg</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Xiao, Xiazi</creator><creator>Terentyev, D.</creator><creator>Ruiz, A.</creator><creator>Zinovev, A.</creator><creator>Bakaev, A.</creator><creator>Zhurkin, E.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1332-5125</orcidid><orcidid>https://orcid.org/0000-0002-2657-645X</orcidid></search><sort><creationdate>20190116</creationdate><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><author>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>CPFEM</topic><topic>Dislocations</topic><topic>Ductile-brittle transition</topic><topic>Energetic particles</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Hall-Petch</topic><topic>High temperature</topic><topic>Load distribution (forces)</topic><topic>Mechanical tests</topic><topic>Nanoindentation</topic><topic>Plastic deformation</topic><topic>Plastic zones</topic><topic>Stress concentration</topic><topic>Thermomechanical treatment</topic><topic>Transition temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Ruiz, A.</creatorcontrib><creatorcontrib>Zinovev, A.</creatorcontrib><creatorcontrib>Bakaev, A.</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xiazi</au><au>Terentyev, D.</au><au>Ruiz, A.</au><au>Zinovev, A.</au><au>Bakaev, A.</au><au>Zhurkin, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature nano-indentation of tungsten: Modelling and experimental validation</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-01-16</date><risdate>2019</risdate><volume>743</volume><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.11.079</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1332-5125</orcidid><orcidid>https://orcid.org/0000-0002-2657-645X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2183153504
source Elsevier ScienceDirect Journals
subjects Computer simulation
CPFEM
Dislocations
Ductile-brittle transition
Energetic particles
Finite element method
Fracture mechanics
Hall-Petch
High temperature
Load distribution (forces)
Mechanical tests
Nanoindentation
Plastic deformation
Plastic zones
Stress concentration
Thermomechanical treatment
Transition temperature
Tungsten
title High temperature nano-indentation of tungsten: Modelling and experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20nano-indentation%20of%20tungsten:%20Modelling%20and%20experimental%20validation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xiao,%20Xiazi&rft.date=2019-01-16&rft.volume=743&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.11.079&rft_dat=%3Cproquest_cross%3E2183153504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183153504&rft_id=info:pmid/&rft_els_id=S0921509318316058&rfr_iscdi=true