High temperature nano-indentation of tungsten: Modelling and experimental validation
It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-bas...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 743 |
creator | Xiao, Xiazi Terentyev, D. Ruiz, A. Zinovev, A. Bakaev, A. Zhurkin, E.E. |
description | It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment. |
doi_str_mv | 10.1016/j.msea.2018.11.079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183153504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318316058</els_id><sourcerecordid>2183153504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMSf47Hw4iAVVQJGKWMpsOfalOEqdYjsV_HtSyoxuuOV97l49hFwDzYBCedtl24AqYxREBpDRqj4hMxAVT_Oal6dkRmsGaUFrfk4uQugopZDTYkbWS7v5SCJud-hVHD0mTrkhtc6giyrawSVDm8TRbUJEd5e8Dgb73rpNopxJ8GvC7PYQ7ZO96q35RS7JWav6gFd_e07enx7Xi2W6ent-WTysUs2ZiGnJyqI2VakqA1SLnOumKabRrG1y3XLFSi0aoMgpKwwUWOa6VkbR1lRClILPyc3x7s4PnyOGKLth9G56KRkIDgUvaD6l2DGl_RCCx1bups7Kf0ug8mBPdvJgTx7sSQA52Zug-yOEU_-9RS-Dtug0GutRR2kG-x_-AxKcebg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183153504</pqid></control><display><type>article</type><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</creator><creatorcontrib>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</creatorcontrib><description>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.11.079</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Computer simulation ; CPFEM ; Dislocations ; Ductile-brittle transition ; Energetic particles ; Finite element method ; Fracture mechanics ; Hall-Petch ; High temperature ; Load distribution (forces) ; Mechanical tests ; Nanoindentation ; Plastic deformation ; Plastic zones ; Stress concentration ; Thermomechanical treatment ; Transition temperature ; Tungsten</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 16, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</citedby><cites>FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</cites><orcidid>0000-0002-1332-5125 ; 0000-0002-2657-645X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318316058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Ruiz, A.</creatorcontrib><creatorcontrib>Zinovev, A.</creatorcontrib><creatorcontrib>Bakaev, A.</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</description><subject>Computer simulation</subject><subject>CPFEM</subject><subject>Dislocations</subject><subject>Ductile-brittle transition</subject><subject>Energetic particles</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Hall-Petch</subject><subject>High temperature</subject><subject>Load distribution (forces)</subject><subject>Mechanical tests</subject><subject>Nanoindentation</subject><subject>Plastic deformation</subject><subject>Plastic zones</subject><subject>Stress concentration</subject><subject>Thermomechanical treatment</subject><subject>Transition temperature</subject><subject>Tungsten</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMSf47Hw4iAVVQJGKWMpsOfalOEqdYjsV_HtSyoxuuOV97l49hFwDzYBCedtl24AqYxREBpDRqj4hMxAVT_Oal6dkRmsGaUFrfk4uQugopZDTYkbWS7v5SCJud-hVHD0mTrkhtc6giyrawSVDm8TRbUJEd5e8Dgb73rpNopxJ8GvC7PYQ7ZO96q35RS7JWav6gFd_e07enx7Xi2W6ent-WTysUs2ZiGnJyqI2VakqA1SLnOumKabRrG1y3XLFSi0aoMgpKwwUWOa6VkbR1lRClILPyc3x7s4PnyOGKLth9G56KRkIDgUvaD6l2DGl_RCCx1bups7Kf0ug8mBPdvJgTx7sSQA52Zug-yOEU_-9RS-Dtug0GutRR2kG-x_-AxKcebg</recordid><startdate>20190116</startdate><enddate>20190116</enddate><creator>Xiao, Xiazi</creator><creator>Terentyev, D.</creator><creator>Ruiz, A.</creator><creator>Zinovev, A.</creator><creator>Bakaev, A.</creator><creator>Zhurkin, E.E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1332-5125</orcidid><orcidid>https://orcid.org/0000-0002-2657-645X</orcidid></search><sort><creationdate>20190116</creationdate><title>High temperature nano-indentation of tungsten: Modelling and experimental validation</title><author>Xiao, Xiazi ; Terentyev, D. ; Ruiz, A. ; Zinovev, A. ; Bakaev, A. ; Zhurkin, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-62659d76a7d10c843cbb5b5bc2fb4cf3a26c8b10e3025d15e64c9ada0fd788683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>CPFEM</topic><topic>Dislocations</topic><topic>Ductile-brittle transition</topic><topic>Energetic particles</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Hall-Petch</topic><topic>High temperature</topic><topic>Load distribution (forces)</topic><topic>Mechanical tests</topic><topic>Nanoindentation</topic><topic>Plastic deformation</topic><topic>Plastic zones</topic><topic>Stress concentration</topic><topic>Thermomechanical treatment</topic><topic>Transition temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Xiazi</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Ruiz, A.</creatorcontrib><creatorcontrib>Zinovev, A.</creatorcontrib><creatorcontrib>Bakaev, A.</creatorcontrib><creatorcontrib>Zhurkin, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Xiazi</au><au>Terentyev, D.</au><au>Ruiz, A.</au><au>Zinovev, A.</au><au>Bakaev, A.</au><au>Zhurkin, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature nano-indentation of tungsten: Modelling and experimental validation</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-01-16</date><risdate>2019</risdate><volume>743</volume><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>It is very well known that tungsten is intrinsically brittle at room temperature, and the characterization of its ductile properties by conventional mechanical tests is possible only above the ductile-to-brittle transition temperature (DBTT), i.e. above 500–700 K. However, the design of tungsten-based components often requires the knowledge of constitutive laws below the DBTT. Here, we carried out instrumented hardness measurements in the temperature range of 300–691 K by nano-indentation. The obtained results are used to extend a set of constitutive laws for the plastic deformation of tungsten, developed earlier on the basis of tensile data, which now covers the temperature range of 300–1273 K. The validation of the constitutive laws was realized by the crystal plasticity finite element method (CPFEM) model, which was applied to simulate the nano-indentation loading curves. The distribution of stress and strain under the indenter was also studied by the CPFEM to bring an insight on the extension of the plastic zone in the process of the indentation, which is of crucial importance when nano-indentation is used to resolve the microstructural features generated by e.g. irradiation by energetic particles, plasma exposure or thermo-mechanical treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.11.079</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1332-5125</orcidid><orcidid>https://orcid.org/0000-0002-2657-645X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-01, Vol.743, p.106-113 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2183153504 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation CPFEM Dislocations Ductile-brittle transition Energetic particles Finite element method Fracture mechanics Hall-Petch High temperature Load distribution (forces) Mechanical tests Nanoindentation Plastic deformation Plastic zones Stress concentration Thermomechanical treatment Transition temperature Tungsten |
title | High temperature nano-indentation of tungsten: Modelling and experimental validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20nano-indentation%20of%20tungsten:%20Modelling%20and%20experimental%20validation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xiao,%20Xiazi&rft.date=2019-01-16&rft.volume=743&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.11.079&rft_dat=%3Cproquest_cross%3E2183153504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183153504&rft_id=info:pmid/&rft_els_id=S0921509318316058&rfr_iscdi=true |