Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge

Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recogniti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-11
Hauptverfasser: Tang, Yandong, Han, Zhi, Yu, Siquan, Zhu, Jianjiang, Wu, Chengdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Tang, Yandong
Han, Zhi
Yu, Siquan
Zhu, Jianjiang
Wu, Chengdong
description Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.
doi_str_mv 10.1155/2019/2892975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182493570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2182493570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f0ea103f091de1935299af8bccae8f5b567c93bced7d2825f59221d40ddd6a043</originalsourceid><addsrcrecordid>eNqF0N9LwzAQB_AiCs7pm89S8FHrcknTNo86_IWTiWzgg1DS5DI7umYmHcP_3owOfPQpB_ncHfeNonMgNwCcjygBMaKFoCLnB9EAeMYSDml-GGpC0wQo-ziOTrxfEkKBQzGIPuetRreVHbp4Wi1RdfE7Krto6662bTz3dbuIZ0623li3klWD8QxX6yY0xK-yU1-7_zvpUceBv7nauviltdsG9QJPoyMjG49n-3cYzR_uZ-OnZDJ9fB7fThLFMtIlhqAEwgwRoBEE41QIaYpKKYmF4RXPciVYpVDnmhaUGy4oBZ0SrXUmScqG0WU_d-3s9wZ9Vy7txrVhZUmhoGkYmZOgrnulnPXeoSnXrl5J91MCKXf5lbv8yn1-gV_1PJyo5bb-T1_0GoNBI_80iFSkwH4Bq0h6MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182493570</pqid></control><display><type>article</type><title>Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tang, Yandong ; Han, Zhi ; Yu, Siquan ; Zhu, Jianjiang ; Wu, Chengdong</creator><contributor>Reinoso, Oscar ; Oscar Reinoso</contributor><creatorcontrib>Tang, Yandong ; Han, Zhi ; Yu, Siquan ; Zhu, Jianjiang ; Wu, Chengdong ; Reinoso, Oscar ; Oscar Reinoso</creatorcontrib><description>Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/2892975</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Acoustics ; Affine transformations ; Engineering ; Entropy ; Feature extraction ; Image detection ; Knowledge ; Localization ; Methods ; Mine detection ; Noise ; Object recognition ; Pattern recognition ; Signal processing ; Sonar ; Target recognition ; Template matching ; Underwater ; Wreckage</subject><ispartof>Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-11</ispartof><rights>Copyright © 2019 Jianjiang Zhu et al.</rights><rights>Copyright © 2019 Jianjiang Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f0ea103f091de1935299af8bccae8f5b567c93bced7d2825f59221d40ddd6a043</citedby><cites>FETCH-LOGICAL-c360t-f0ea103f091de1935299af8bccae8f5b567c93bced7d2825f59221d40ddd6a043</cites><orcidid>0000-0002-8039-6679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Reinoso, Oscar</contributor><contributor>Oscar Reinoso</contributor><creatorcontrib>Tang, Yandong</creatorcontrib><creatorcontrib>Han, Zhi</creatorcontrib><creatorcontrib>Yu, Siquan</creatorcontrib><creatorcontrib>Zhu, Jianjiang</creatorcontrib><creatorcontrib>Wu, Chengdong</creatorcontrib><title>Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge</title><title>Mathematical problems in engineering</title><description>Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.</description><subject>Acoustics</subject><subject>Affine transformations</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Knowledge</subject><subject>Localization</subject><subject>Methods</subject><subject>Mine detection</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Signal processing</subject><subject>Sonar</subject><subject>Target recognition</subject><subject>Template matching</subject><subject>Underwater</subject><subject>Wreckage</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0N9LwzAQB_AiCs7pm89S8FHrcknTNo86_IWTiWzgg1DS5DI7umYmHcP_3owOfPQpB_ncHfeNonMgNwCcjygBMaKFoCLnB9EAeMYSDml-GGpC0wQo-ziOTrxfEkKBQzGIPuetRreVHbp4Wi1RdfE7Krto6662bTz3dbuIZ0623li3klWD8QxX6yY0xK-yU1-7_zvpUceBv7nauviltdsG9QJPoyMjG49n-3cYzR_uZ-OnZDJ9fB7fThLFMtIlhqAEwgwRoBEE41QIaYpKKYmF4RXPciVYpVDnmhaUGy4oBZ0SrXUmScqG0WU_d-3s9wZ9Vy7txrVhZUmhoGkYmZOgrnulnPXeoSnXrl5J91MCKXf5lbv8yn1-gV_1PJyo5bb-T1_0GoNBI_80iFSkwH4Bq0h6MA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tang, Yandong</creator><creator>Han, Zhi</creator><creator>Yu, Siquan</creator><creator>Zhu, Jianjiang</creator><creator>Wu, Chengdong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8039-6679</orcidid></search><sort><creationdate>20190101</creationdate><title>Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge</title><author>Tang, Yandong ; Han, Zhi ; Yu, Siquan ; Zhu, Jianjiang ; Wu, Chengdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f0ea103f091de1935299af8bccae8f5b567c93bced7d2825f59221d40ddd6a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Affine transformations</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Knowledge</topic><topic>Localization</topic><topic>Methods</topic><topic>Mine detection</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Signal processing</topic><topic>Sonar</topic><topic>Target recognition</topic><topic>Template matching</topic><topic>Underwater</topic><topic>Wreckage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yandong</creatorcontrib><creatorcontrib>Han, Zhi</creatorcontrib><creatorcontrib>Yu, Siquan</creatorcontrib><creatorcontrib>Zhu, Jianjiang</creatorcontrib><creatorcontrib>Wu, Chengdong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yandong</au><au>Han, Zhi</au><au>Yu, Siquan</au><au>Zhu, Jianjiang</au><au>Wu, Chengdong</au><au>Reinoso, Oscar</au><au>Oscar Reinoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Underwater object recognition in sonar images, such as mine detection and wreckage detection of a submerged airplane, is a very challenging task. The main difficulties include but are not limited to object rotation, confusion from false targets and complex backgrounds, and extensibility of recognition ability on diverse types of objects. In this paper, we propose an underwater object detection and recognition method using a transformable template matching approach based on prior knowledge. Specifically, we first extract features and construct a template from sonar video sequences based on the analysis of acoustic shadows and highlight regions. Then, we identify the target region in the objective image by fast saliency detection techniques based on FFT, which can significantly improve efficiency by avoiding an exhaustive global search. After affine transformation of the template according to the orientation of the target, we extract normalized gradient features and calculate the similarity between the template and the target region, which can solve various difficulties mentioned above using only one template. Experimental results demonstrate that the proposed method can well recognize different underwater objects, such as mine-like objects and triangle-like objects and can satisfy the demands of real-time application.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2892975</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8039-6679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2182493570
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Acoustics
Affine transformations
Engineering
Entropy
Feature extraction
Image detection
Knowledge
Localization
Methods
Mine detection
Noise
Object recognition
Pattern recognition
Signal processing
Sonar
Target recognition
Template matching
Underwater
Wreckage
title Underwater Object Recognition Using Transformable Template Matching Based on Prior Knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Object%20Recognition%20Using%20Transformable%20Template%20Matching%20Based%20on%20Prior%20Knowledge&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tang,%20Yandong&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/2892975&rft_dat=%3Cproquest_cross%3E2182493570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2182493570&rft_id=info:pmid/&rfr_iscdi=true