A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios

•A new non-dimensional effective local energy is proposed and generalized for fiber and matrix based on continuum damage mechanics.•Fatigue behavior of unidirectional composites is studied at the level of fiber and matrix.•Effect of stress ratio on fatigue damage and fatigue life of unidirectional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2019-01, Vol.205, p.120-135
Hauptverfasser: Fazlali, Babak, Mohammadi, Bijan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 120
container_title Engineering fracture mechanics
container_volume 205
creator Fazlali, Babak
Mohammadi, Bijan
description •A new non-dimensional effective local energy is proposed and generalized for fiber and matrix based on continuum damage mechanics.•Fatigue behavior of unidirectional composites is studied at the level of fiber and matrix.•Effect of stress ratio on fatigue damage and fatigue life of unidirectional composites is considered.•Fatigue life of unidirectional composite materials can accurately be predicted for different stress levels and stress ratios. The off-axis fatigue behavior of unidirectional composites has been studied using an energy based model. The fatigue model is based on average stresses in fiber and matrix derived from a micromechanical approach. Different fatigue damage modes are identified on the basis of physical interpretation of the driving forces defined from Continuum Damage Mechanics. The model is able to distinguish between damage in fiber and matrix and predict the residual stiffness in transverse and longitudinal direction. The proposed model is verified and validated by studying the fatigue behavior of unidirectional carbon/epoxy and glass/epoxy laminates under non-negative mean stresses. The predictions are in good agreement with the experimental data regardless of stress ratio, stress level and fiber orientation.
doi_str_mv 10.1016/j.engfracmech.2018.11.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182486199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794418304703</els_id><sourcerecordid>2182486199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-562e9b52861d44969cfb27535079711d9ae2463246c840bab77456305f751d853</originalsourceid><addsrcrecordid>eNqNkEFv1DAQhS0EUpfCfzDinOBJ7Dg-VitKkSpxgbPl2OPUqyRebAe1N346Xi0HjhxGM9J78zTzEfIBWAsMhk-nFrfZJ2NXtE9tx2BsAVrW8VfkAKPsG9mDeE0OjEGdFec35G3OJ8aYHEZ2IL_v6BpsitmaBSlumOaXZjIZHfWmhHlH6sxqZqRrdLhQHxPdt-BCQltC3MxCbVzPMYeCuSoOE133pQTzHKq2ROPCNlNTqAveY8Kt0FwS5kxTzY_5HXnjzZLx_d9-S37cf_5-fGgev335erx7bGzPVWnE0KGaRDcO4DhXg7J-6qToBZNKAjhlsONDX8uOnE1mkpKLoWfCSwFuFP0t-XjNPaf4c8dc9Cnuqd6fdQdjx2uwUtWlrq4LkpzQ63MKq0kvGpi-ANcn_Q9wfQGuAXQFXneP112sb_wKmHS2ATeLV1jaxfAfKX8AnvOQ5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182486199</pqid></control><display><type>article</type><title>A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios</title><source>Elsevier ScienceDirect Journals</source><creator>Fazlali, Babak ; Mohammadi, Bijan</creator><creatorcontrib>Fazlali, Babak ; Mohammadi, Bijan</creatorcontrib><description>•A new non-dimensional effective local energy is proposed and generalized for fiber and matrix based on continuum damage mechanics.•Fatigue behavior of unidirectional composites is studied at the level of fiber and matrix.•Effect of stress ratio on fatigue damage and fatigue life of unidirectional composites is considered.•Fatigue life of unidirectional composite materials can accurately be predicted for different stress levels and stress ratios. The off-axis fatigue behavior of unidirectional composites has been studied using an energy based model. The fatigue model is based on average stresses in fiber and matrix derived from a micromechanical approach. Different fatigue damage modes are identified on the basis of physical interpretation of the driving forces defined from Continuum Damage Mechanics. The model is able to distinguish between damage in fiber and matrix and predict the residual stiffness in transverse and longitudinal direction. The proposed model is verified and validated by studying the fatigue behavior of unidirectional carbon/epoxy and glass/epoxy laminates under non-negative mean stresses. The predictions are in good agreement with the experimental data regardless of stress ratio, stress level and fiber orientation.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2018.11.024</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon-epoxy composites ; Continuum damage mechanics ; Crack propagation ; Damage assessment ; Damage detection ; Fatigue damage evolution ; Fatigue failure ; Fatigue life ; Fiber orientation ; Laminates ; Mathematical models ; Micromechanical constitutive modeling ; Stiffness ; Stress ratio ; Unidirectional composites</subject><ispartof>Engineering fracture mechanics, 2019-01, Vol.205, p.120-135</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-562e9b52861d44969cfb27535079711d9ae2463246c840bab77456305f751d853</citedby><cites>FETCH-LOGICAL-c349t-562e9b52861d44969cfb27535079711d9ae2463246c840bab77456305f751d853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794418304703$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Fazlali, Babak</creatorcontrib><creatorcontrib>Mohammadi, Bijan</creatorcontrib><title>A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios</title><title>Engineering fracture mechanics</title><description>•A new non-dimensional effective local energy is proposed and generalized for fiber and matrix based on continuum damage mechanics.•Fatigue behavior of unidirectional composites is studied at the level of fiber and matrix.•Effect of stress ratio on fatigue damage and fatigue life of unidirectional composites is considered.•Fatigue life of unidirectional composite materials can accurately be predicted for different stress levels and stress ratios. The off-axis fatigue behavior of unidirectional composites has been studied using an energy based model. The fatigue model is based on average stresses in fiber and matrix derived from a micromechanical approach. Different fatigue damage modes are identified on the basis of physical interpretation of the driving forces defined from Continuum Damage Mechanics. The model is able to distinguish between damage in fiber and matrix and predict the residual stiffness in transverse and longitudinal direction. The proposed model is verified and validated by studying the fatigue behavior of unidirectional carbon/epoxy and glass/epoxy laminates under non-negative mean stresses. The predictions are in good agreement with the experimental data regardless of stress ratio, stress level and fiber orientation.</description><subject>Carbon-epoxy composites</subject><subject>Continuum damage mechanics</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Fatigue damage evolution</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fiber orientation</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Micromechanical constitutive modeling</subject><subject>Stiffness</subject><subject>Stress ratio</subject><subject>Unidirectional composites</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv1DAQhS0EUpfCfzDinOBJ7Dg-VitKkSpxgbPl2OPUqyRebAe1N346Xi0HjhxGM9J78zTzEfIBWAsMhk-nFrfZJ2NXtE9tx2BsAVrW8VfkAKPsG9mDeE0OjEGdFec35G3OJ8aYHEZ2IL_v6BpsitmaBSlumOaXZjIZHfWmhHlH6sxqZqRrdLhQHxPdt-BCQltC3MxCbVzPMYeCuSoOE133pQTzHKq2ROPCNlNTqAveY8Kt0FwS5kxTzY_5HXnjzZLx_d9-S37cf_5-fGgev335erx7bGzPVWnE0KGaRDcO4DhXg7J-6qToBZNKAjhlsONDX8uOnE1mkpKLoWfCSwFuFP0t-XjNPaf4c8dc9Cnuqd6fdQdjx2uwUtWlrq4LkpzQ63MKq0kvGpi-ANcn_Q9wfQGuAXQFXneP112sb_wKmHS2ATeLV1jaxfAfKX8AnvOQ5A</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Fazlali, Babak</creator><creator>Mohammadi, Bijan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201901</creationdate><title>A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios</title><author>Fazlali, Babak ; Mohammadi, Bijan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-562e9b52861d44969cfb27535079711d9ae2463246c840bab77456305f751d853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon-epoxy composites</topic><topic>Continuum damage mechanics</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Fatigue damage evolution</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fiber orientation</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Micromechanical constitutive modeling</topic><topic>Stiffness</topic><topic>Stress ratio</topic><topic>Unidirectional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazlali, Babak</creatorcontrib><creatorcontrib>Mohammadi, Bijan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazlali, Babak</au><au>Mohammadi, Bijan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>205</volume><spage>120</spage><epage>135</epage><pages>120-135</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•A new non-dimensional effective local energy is proposed and generalized for fiber and matrix based on continuum damage mechanics.•Fatigue behavior of unidirectional composites is studied at the level of fiber and matrix.•Effect of stress ratio on fatigue damage and fatigue life of unidirectional composites is considered.•Fatigue life of unidirectional composite materials can accurately be predicted for different stress levels and stress ratios. The off-axis fatigue behavior of unidirectional composites has been studied using an energy based model. The fatigue model is based on average stresses in fiber and matrix derived from a micromechanical approach. Different fatigue damage modes are identified on the basis of physical interpretation of the driving forces defined from Continuum Damage Mechanics. The model is able to distinguish between damage in fiber and matrix and predict the residual stiffness in transverse and longitudinal direction. The proposed model is verified and validated by studying the fatigue behavior of unidirectional carbon/epoxy and glass/epoxy laminates under non-negative mean stresses. The predictions are in good agreement with the experimental data regardless of stress ratio, stress level and fiber orientation.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2018.11.024</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2019-01, Vol.205, p.120-135
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2182486199
source Elsevier ScienceDirect Journals
subjects Carbon-epoxy composites
Continuum damage mechanics
Crack propagation
Damage assessment
Damage detection
Fatigue damage evolution
Fatigue failure
Fatigue life
Fiber orientation
Laminates
Mathematical models
Micromechanical constitutive modeling
Stiffness
Stress ratio
Unidirectional composites
title A microscale energy-based fatigue damage model for unidirectional composites under multiaxial loading at different stress ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microscale%20energy-based%20fatigue%20damage%20model%20for%20unidirectional%20composites%20under%20multiaxial%20loading%20at%20different%20stress%20ratios&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Fazlali,%20Babak&rft.date=2019-01&rft.volume=205&rft.spage=120&rft.epage=135&rft.pages=120-135&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2018.11.024&rft_dat=%3Cproquest_cross%3E2182486199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2182486199&rft_id=info:pmid/&rft_els_id=S0013794418304703&rfr_iscdi=true