An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method

Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2019-02, Vol.131 (9), p.2841-2845
Hauptverfasser: Paidikondala, Maruthibabu, Rangasami, Vignesh Kumar, Nawale, Ganesh N., Casalini, Tommaso, Perale, Giuseppe, Kadekar, Sandeep, Mohanty, Gaurav, Salminen, Turkka, Oommen, Oommen P., Varghese, Oommen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2845
container_issue 9
container_start_page 2841
container_title Angewandte Chemie
container_volume 131
creator Paidikondala, Maruthibabu
Rangasami, Vignesh Kumar
Nawale, Ganesh N.
Casalini, Tommaso
Perale, Giuseppe
Kadekar, Sandeep
Mohanty, Gaurav
Salminen, Turkka
Oommen, Oommen P.
Varghese, Oommen P.
description Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels. Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.
doi_str_mv 10.1002/ange.201900099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182423352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2182423352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</originalsourceid><addsrcrecordid>eNqFULlOAzEQtRBIhKOltkTLBh-b7JpuicIhhSBFgXZl7DEYNnawN4J0fAIVH8iX4BAEJdWM5h0z8xA6oKRLCWHH0t1DlxEqCCFCbKAO7TGa8aJXbKIOIXmelSwX22gnxsdE6bNCdNBH5fCNg9c5qBY0nvgGsDf4YimbRfDOKlwpq7F1eBqkMVY9WXePo52Mq4QEHyNuHwAPoGkWjQz4VIZgIZzgaZqe2RBbfGr9zM6gteoIV86uTI_w2LvPt_dbG2SzcnbRpAMShq-gffB6D20Z2UTY_6m76OZsOB1cZKPr88tBNcoUpYXI1B0ruDKlplwpcleWnJo89QSEFpLpXHFRaN0rFKg0LfMcpOprbkTRZyUhfBcdrn3nwT8vILb1o18El1bWjKa4GOc9lljdNev74QCmngc7k2FZU1Kvsq9X2de_2SeBWAtebAPLf9h1NT4f_mm_AMW9iik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182423352</pqid></control><display><type>article</type><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</creator><creatorcontrib>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</creatorcontrib><description>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels. Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201900099</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biological activity ; Biomedical materials ; Biomimetics ; CD44 antigen ; Chemistry ; Computer applications ; Extrazelluläre Matrix ; Gene silencing ; Hyaluronic acid ; Hyaluronsäure ; Hydrogen bonding ; Light scattering ; Mesenchyme ; Nanopartikel ; Nucleic acids ; Osteosarcoma ; Photon correlation spectroscopy ; Polymers ; Ribonucleic acid ; RNA ; RNAi ; Scanning electron microscopy ; siRNA ; Stromal cells ; Transfection ; Transfektion</subject><ispartof>Angewandte Chemie, 2019-02, Vol.131 (9), p.2841-2845</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</cites><orcidid>0000-0003-2896-2765 ; 0000-0002-0816-307X ; 0000-0003-2768-0133 ; 0000-0001-8872-9928 ; 0000-0001-8151-5310 ; 0000-0002-7256-0758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201900099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201900099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Paidikondala, Maruthibabu</creatorcontrib><creatorcontrib>Rangasami, Vignesh Kumar</creatorcontrib><creatorcontrib>Nawale, Ganesh N.</creatorcontrib><creatorcontrib>Casalini, Tommaso</creatorcontrib><creatorcontrib>Perale, Giuseppe</creatorcontrib><creatorcontrib>Kadekar, Sandeep</creatorcontrib><creatorcontrib>Mohanty, Gaurav</creatorcontrib><creatorcontrib>Salminen, Turkka</creatorcontrib><creatorcontrib>Oommen, Oommen P.</creatorcontrib><creatorcontrib>Varghese, Oommen P.</creatorcontrib><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><title>Angewandte Chemie</title><description>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels. Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</description><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>CD44 antigen</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>Extrazelluläre Matrix</subject><subject>Gene silencing</subject><subject>Hyaluronic acid</subject><subject>Hyaluronsäure</subject><subject>Hydrogen bonding</subject><subject>Light scattering</subject><subject>Mesenchyme</subject><subject>Nanopartikel</subject><subject>Nucleic acids</subject><subject>Osteosarcoma</subject><subject>Photon correlation spectroscopy</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNAi</subject><subject>Scanning electron microscopy</subject><subject>siRNA</subject><subject>Stromal cells</subject><subject>Transfection</subject><subject>Transfektion</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFULlOAzEQtRBIhKOltkTLBh-b7JpuicIhhSBFgXZl7DEYNnawN4J0fAIVH8iX4BAEJdWM5h0z8xA6oKRLCWHH0t1DlxEqCCFCbKAO7TGa8aJXbKIOIXmelSwX22gnxsdE6bNCdNBH5fCNg9c5qBY0nvgGsDf4YimbRfDOKlwpq7F1eBqkMVY9WXePo52Mq4QEHyNuHwAPoGkWjQz4VIZgIZzgaZqe2RBbfGr9zM6gteoIV86uTI_w2LvPt_dbG2SzcnbRpAMShq-gffB6D20Z2UTY_6m76OZsOB1cZKPr88tBNcoUpYXI1B0ruDKlplwpcleWnJo89QSEFpLpXHFRaN0rFKg0LfMcpOprbkTRZyUhfBcdrn3nwT8vILb1o18El1bWjKa4GOc9lljdNev74QCmngc7k2FZU1Kvsq9X2de_2SeBWAtebAPLf9h1NT4f_mm_AMW9iik</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Paidikondala, Maruthibabu</creator><creator>Rangasami, Vignesh Kumar</creator><creator>Nawale, Ganesh N.</creator><creator>Casalini, Tommaso</creator><creator>Perale, Giuseppe</creator><creator>Kadekar, Sandeep</creator><creator>Mohanty, Gaurav</creator><creator>Salminen, Turkka</creator><creator>Oommen, Oommen P.</creator><creator>Varghese, Oommen P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2896-2765</orcidid><orcidid>https://orcid.org/0000-0002-0816-307X</orcidid><orcidid>https://orcid.org/0000-0003-2768-0133</orcidid><orcidid>https://orcid.org/0000-0001-8872-9928</orcidid><orcidid>https://orcid.org/0000-0001-8151-5310</orcidid><orcidid>https://orcid.org/0000-0002-7256-0758</orcidid></search><sort><creationdate>20190225</creationdate><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><author>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>CD44 antigen</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>Extrazelluläre Matrix</topic><topic>Gene silencing</topic><topic>Hyaluronic acid</topic><topic>Hyaluronsäure</topic><topic>Hydrogen bonding</topic><topic>Light scattering</topic><topic>Mesenchyme</topic><topic>Nanopartikel</topic><topic>Nucleic acids</topic><topic>Osteosarcoma</topic><topic>Photon correlation spectroscopy</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNAi</topic><topic>Scanning electron microscopy</topic><topic>siRNA</topic><topic>Stromal cells</topic><topic>Transfection</topic><topic>Transfektion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paidikondala, Maruthibabu</creatorcontrib><creatorcontrib>Rangasami, Vignesh Kumar</creatorcontrib><creatorcontrib>Nawale, Ganesh N.</creatorcontrib><creatorcontrib>Casalini, Tommaso</creatorcontrib><creatorcontrib>Perale, Giuseppe</creatorcontrib><creatorcontrib>Kadekar, Sandeep</creatorcontrib><creatorcontrib>Mohanty, Gaurav</creatorcontrib><creatorcontrib>Salminen, Turkka</creatorcontrib><creatorcontrib>Oommen, Oommen P.</creatorcontrib><creatorcontrib>Varghese, Oommen P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paidikondala, Maruthibabu</au><au>Rangasami, Vignesh Kumar</au><au>Nawale, Ganesh N.</au><au>Casalini, Tommaso</au><au>Perale, Giuseppe</au><au>Kadekar, Sandeep</au><au>Mohanty, Gaurav</au><au>Salminen, Turkka</au><au>Oommen, Oommen P.</au><au>Varghese, Oommen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</atitle><jtitle>Angewandte Chemie</jtitle><date>2019-02-25</date><risdate>2019</risdate><volume>131</volume><issue>9</issue><spage>2841</spage><epage>2845</epage><pages>2841-2845</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels. Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201900099</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2896-2765</orcidid><orcidid>https://orcid.org/0000-0002-0816-307X</orcidid><orcidid>https://orcid.org/0000-0003-2768-0133</orcidid><orcidid>https://orcid.org/0000-0001-8872-9928</orcidid><orcidid>https://orcid.org/0000-0001-8151-5310</orcidid><orcidid>https://orcid.org/0000-0002-7256-0758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2019-02, Vol.131 (9), p.2841-2845
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2182423352
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biological activity
Biomedical materials
Biomimetics
CD44 antigen
Chemistry
Computer applications
Extrazelluläre Matrix
Gene silencing
Hyaluronic acid
Hyaluronsäure
Hydrogen bonding
Light scattering
Mesenchyme
Nanopartikel
Nucleic acids
Osteosarcoma
Photon correlation spectroscopy
Polymers
Ribonucleic acid
RNA
RNAi
Scanning electron microscopy
siRNA
Stromal cells
Transfection
Transfektion
title An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Unexpected%20Role%20of%20Hyaluronic%20Acid%20in%20Trafficking%20siRNA%20Across%20the%20Cellular%20Barrier:%20The%20First%20Biomimetic,%20Anionic,%20Non%E2%80%90Viral%20Transfection%20Method&rft.jtitle=Angewandte%20Chemie&rft.au=Paidikondala,%20Maruthibabu&rft.date=2019-02-25&rft.volume=131&rft.issue=9&rft.spage=2841&rft.epage=2845&rft.pages=2841-2845&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201900099&rft_dat=%3Cproquest_cross%3E2182423352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2182423352&rft_id=info:pmid/&rfr_iscdi=true