An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method
Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membra...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2019-02, Vol.131 (9), p.2841-2845 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2845 |
---|---|
container_issue | 9 |
container_start_page | 2841 |
container_title | Angewandte Chemie |
container_volume | 131 |
creator | Paidikondala, Maruthibabu Rangasami, Vignesh Kumar Nawale, Ganesh N. Casalini, Tommaso Perale, Giuseppe Kadekar, Sandeep Mohanty, Gaurav Salminen, Turkka Oommen, Oommen P. Varghese, Oommen P. |
description | Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.
Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %. |
doi_str_mv | 10.1002/ange.201900099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182423352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2182423352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</originalsourceid><addsrcrecordid>eNqFULlOAzEQtRBIhKOltkTLBh-b7JpuicIhhSBFgXZl7DEYNnawN4J0fAIVH8iX4BAEJdWM5h0z8xA6oKRLCWHH0t1DlxEqCCFCbKAO7TGa8aJXbKIOIXmelSwX22gnxsdE6bNCdNBH5fCNg9c5qBY0nvgGsDf4YimbRfDOKlwpq7F1eBqkMVY9WXePo52Mq4QEHyNuHwAPoGkWjQz4VIZgIZzgaZqe2RBbfGr9zM6gteoIV86uTI_w2LvPt_dbG2SzcnbRpAMShq-gffB6D20Z2UTY_6m76OZsOB1cZKPr88tBNcoUpYXI1B0ruDKlplwpcleWnJo89QSEFpLpXHFRaN0rFKg0LfMcpOprbkTRZyUhfBcdrn3nwT8vILb1o18El1bWjKa4GOc9lljdNev74QCmngc7k2FZU1Kvsq9X2de_2SeBWAtebAPLf9h1NT4f_mm_AMW9iik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182423352</pqid></control><display><type>article</type><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</creator><creatorcontrib>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</creatorcontrib><description>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.
Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201900099</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biological activity ; Biomedical materials ; Biomimetics ; CD44 antigen ; Chemistry ; Computer applications ; Extrazelluläre Matrix ; Gene silencing ; Hyaluronic acid ; Hyaluronsäure ; Hydrogen bonding ; Light scattering ; Mesenchyme ; Nanopartikel ; Nucleic acids ; Osteosarcoma ; Photon correlation spectroscopy ; Polymers ; Ribonucleic acid ; RNA ; RNAi ; Scanning electron microscopy ; siRNA ; Stromal cells ; Transfection ; Transfektion</subject><ispartof>Angewandte Chemie, 2019-02, Vol.131 (9), p.2841-2845</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</cites><orcidid>0000-0003-2896-2765 ; 0000-0002-0816-307X ; 0000-0003-2768-0133 ; 0000-0001-8872-9928 ; 0000-0001-8151-5310 ; 0000-0002-7256-0758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201900099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201900099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Paidikondala, Maruthibabu</creatorcontrib><creatorcontrib>Rangasami, Vignesh Kumar</creatorcontrib><creatorcontrib>Nawale, Ganesh N.</creatorcontrib><creatorcontrib>Casalini, Tommaso</creatorcontrib><creatorcontrib>Perale, Giuseppe</creatorcontrib><creatorcontrib>Kadekar, Sandeep</creatorcontrib><creatorcontrib>Mohanty, Gaurav</creatorcontrib><creatorcontrib>Salminen, Turkka</creatorcontrib><creatorcontrib>Oommen, Oommen P.</creatorcontrib><creatorcontrib>Varghese, Oommen P.</creatorcontrib><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><title>Angewandte Chemie</title><description>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.
Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</description><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>CD44 antigen</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>Extrazelluläre Matrix</subject><subject>Gene silencing</subject><subject>Hyaluronic acid</subject><subject>Hyaluronsäure</subject><subject>Hydrogen bonding</subject><subject>Light scattering</subject><subject>Mesenchyme</subject><subject>Nanopartikel</subject><subject>Nucleic acids</subject><subject>Osteosarcoma</subject><subject>Photon correlation spectroscopy</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNAi</subject><subject>Scanning electron microscopy</subject><subject>siRNA</subject><subject>Stromal cells</subject><subject>Transfection</subject><subject>Transfektion</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFULlOAzEQtRBIhKOltkTLBh-b7JpuicIhhSBFgXZl7DEYNnawN4J0fAIVH8iX4BAEJdWM5h0z8xA6oKRLCWHH0t1DlxEqCCFCbKAO7TGa8aJXbKIOIXmelSwX22gnxsdE6bNCdNBH5fCNg9c5qBY0nvgGsDf4YimbRfDOKlwpq7F1eBqkMVY9WXePo52Mq4QEHyNuHwAPoGkWjQz4VIZgIZzgaZqe2RBbfGr9zM6gteoIV86uTI_w2LvPt_dbG2SzcnbRpAMShq-gffB6D20Z2UTY_6m76OZsOB1cZKPr88tBNcoUpYXI1B0ruDKlplwpcleWnJo89QSEFpLpXHFRaN0rFKg0LfMcpOprbkTRZyUhfBcdrn3nwT8vILb1o18El1bWjKa4GOc9lljdNev74QCmngc7k2FZU1Kvsq9X2de_2SeBWAtebAPLf9h1NT4f_mm_AMW9iik</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Paidikondala, Maruthibabu</creator><creator>Rangasami, Vignesh Kumar</creator><creator>Nawale, Ganesh N.</creator><creator>Casalini, Tommaso</creator><creator>Perale, Giuseppe</creator><creator>Kadekar, Sandeep</creator><creator>Mohanty, Gaurav</creator><creator>Salminen, Turkka</creator><creator>Oommen, Oommen P.</creator><creator>Varghese, Oommen P.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2896-2765</orcidid><orcidid>https://orcid.org/0000-0002-0816-307X</orcidid><orcidid>https://orcid.org/0000-0003-2768-0133</orcidid><orcidid>https://orcid.org/0000-0001-8872-9928</orcidid><orcidid>https://orcid.org/0000-0001-8151-5310</orcidid><orcidid>https://orcid.org/0000-0002-7256-0758</orcidid></search><sort><creationdate>20190225</creationdate><title>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</title><author>Paidikondala, Maruthibabu ; Rangasami, Vignesh Kumar ; Nawale, Ganesh N. ; Casalini, Tommaso ; Perale, Giuseppe ; Kadekar, Sandeep ; Mohanty, Gaurav ; Salminen, Turkka ; Oommen, Oommen P. ; Varghese, Oommen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-cb273cf8d13cc0b8831f413c0e9d9a2d4c397dd57cec3c0844eac6d3f97628003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>CD44 antigen</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>Extrazelluläre Matrix</topic><topic>Gene silencing</topic><topic>Hyaluronic acid</topic><topic>Hyaluronsäure</topic><topic>Hydrogen bonding</topic><topic>Light scattering</topic><topic>Mesenchyme</topic><topic>Nanopartikel</topic><topic>Nucleic acids</topic><topic>Osteosarcoma</topic><topic>Photon correlation spectroscopy</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNAi</topic><topic>Scanning electron microscopy</topic><topic>siRNA</topic><topic>Stromal cells</topic><topic>Transfection</topic><topic>Transfektion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paidikondala, Maruthibabu</creatorcontrib><creatorcontrib>Rangasami, Vignesh Kumar</creatorcontrib><creatorcontrib>Nawale, Ganesh N.</creatorcontrib><creatorcontrib>Casalini, Tommaso</creatorcontrib><creatorcontrib>Perale, Giuseppe</creatorcontrib><creatorcontrib>Kadekar, Sandeep</creatorcontrib><creatorcontrib>Mohanty, Gaurav</creatorcontrib><creatorcontrib>Salminen, Turkka</creatorcontrib><creatorcontrib>Oommen, Oommen P.</creatorcontrib><creatorcontrib>Varghese, Oommen P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paidikondala, Maruthibabu</au><au>Rangasami, Vignesh Kumar</au><au>Nawale, Ganesh N.</au><au>Casalini, Tommaso</au><au>Perale, Giuseppe</au><au>Kadekar, Sandeep</au><au>Mohanty, Gaurav</au><au>Salminen, Turkka</au><au>Oommen, Oommen P.</au><au>Varghese, Oommen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method</atitle><jtitle>Angewandte Chemie</jtitle><date>2019-02-25</date><risdate>2019</risdate><volume>131</volume><issue>9</issue><spage>2841</spage><epage>2845</epage><pages>2841-2845</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular‐matrix‐derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size‐ and concentration‐dependent gene silencing in a CD44‐positive human osteosarcoma cell line (MG‐63) and in human mesenchymal stromal cells (hMSCs). This native HA‐based siRNA transfection represents the first report on an anionic, non‐viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.
Molekulare Mitfahrgelegenheit: Die durch Hyaluronsäure induzierte Stabilisierung von siRNA über Wasserstoffbrücken und Van‐der‐Waals‐Wechselwirkungen spielt eine wichtige Rolle bei der siRNA‐Aufnahme in Zellen. Die Nachahmung dieses zellulären Transportmechanismus ermöglichte den Transfer von RNAi‐Molekülen in zwei verschiedene Zelllinien, einhergehend mit einem Gen‐Knockdown von ca. 60 %.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201900099</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2896-2765</orcidid><orcidid>https://orcid.org/0000-0002-0816-307X</orcidid><orcidid>https://orcid.org/0000-0003-2768-0133</orcidid><orcidid>https://orcid.org/0000-0001-8872-9928</orcidid><orcidid>https://orcid.org/0000-0001-8151-5310</orcidid><orcidid>https://orcid.org/0000-0002-7256-0758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2019-02, Vol.131 (9), p.2841-2845 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2182423352 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility Biological activity Biomedical materials Biomimetics CD44 antigen Chemistry Computer applications Extrazelluläre Matrix Gene silencing Hyaluronic acid Hyaluronsäure Hydrogen bonding Light scattering Mesenchyme Nanopartikel Nucleic acids Osteosarcoma Photon correlation spectroscopy Polymers Ribonucleic acid RNA RNAi Scanning electron microscopy siRNA Stromal cells Transfection Transfektion |
title | An Unexpected Role of Hyaluronic Acid in Trafficking siRNA Across the Cellular Barrier: The First Biomimetic, Anionic, Non‐Viral Transfection Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Unexpected%20Role%20of%20Hyaluronic%20Acid%20in%20Trafficking%20siRNA%20Across%20the%20Cellular%20Barrier:%20The%20First%20Biomimetic,%20Anionic,%20Non%E2%80%90Viral%20Transfection%20Method&rft.jtitle=Angewandte%20Chemie&rft.au=Paidikondala,%20Maruthibabu&rft.date=2019-02-25&rft.volume=131&rft.issue=9&rft.spage=2841&rft.epage=2845&rft.pages=2841-2845&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201900099&rft_dat=%3Cproquest_cross%3E2182423352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2182423352&rft_id=info:pmid/&rfr_iscdi=true |