Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation

In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-04, Vol.50 (4), p.2022-2040
Hauptverfasser: Kundin, Julia, Ramazani, Ali, Prahl, Ulrich, Haase, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue 4
container_start_page 2022
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 50
creator Kundin, Julia
Ramazani, Ali
Prahl, Ulrich
Haase, Christian
description In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.
doi_str_mv 10.1007/s11661-019-05143-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181778193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181778193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-fb17c825522e1c6a7226ffcfeece9be0efc9f25e2d49dba510f149e36f0188363</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhRtR8PkHXAVctzeVfrtT73gVZlDwsQ2ZdGWMxKRvkpbxl_h3TTuCO1epwDmniu9k2THQU6C0-RMA6hpyCl1OKyiLfL2V7UGVBuhKup1m2hR5VbNiN9sP4YXSJC3qvexjoaV3IfpRxtEjmb05M0btLHGKXGgr_DsRtieL0UQt3evgLNpIFsKuhMWA5D4imkD-jl7bFblHgzLqNyRzEdCTBSabXZ2Ru-f0z680mpTlejSTegqerQf0-jWFCkOehNG9mNYfZjtKmIBH3-9B9ng1e7i8zue3_24uz-e5LFkXc7WERrasqhhDkLVoGKuVkgpRYrdEikp2ilXI-rLrl6ICqqDssKgVhbYt6uIgO9nkDt79HzFE_uJGb9NKzqCFpmkTp6RiG9XEKnhUfEg3JzYcKJ8K4JsCeKLKvwrg62QqNqYwTGzQ_0T_4voEyD2NJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181778193</pqid></control><display><type>article</type><title>Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation</title><source>SpringerNature Journals</source><creator>Kundin, Julia ; Ramazani, Ali ; Prahl, Ulrich ; Haase, Christian</creator><creatorcontrib>Kundin, Julia ; Ramazani, Ali ; Prahl, Ulrich ; Haase, Christian</creatorcontrib><description>In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05143-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dendritic structure ; Directional solidification ; Evolution ; Iron ; Laser beam melting ; Manganese steels ; Materials Science ; Mathematical models ; Metallic Materials ; Microstructure ; Nanotechnology ; Numerical prediction ; Process parameters ; Rapid prototyping ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Velocity</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-04, Vol.50 (4), p.2022-2040</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-fb17c825522e1c6a7226ffcfeece9be0efc9f25e2d49dba510f149e36f0188363</citedby><cites>FETCH-LOGICAL-c429t-fb17c825522e1c6a7226ffcfeece9be0efc9f25e2d49dba510f149e36f0188363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05143-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05143-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kundin, Julia</creatorcontrib><creatorcontrib>Ramazani, Ali</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><creatorcontrib>Haase, Christian</creatorcontrib><title>Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dendritic structure</subject><subject>Directional solidification</subject><subject>Evolution</subject><subject>Iron</subject><subject>Laser beam melting</subject><subject>Manganese steels</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Numerical prediction</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Velocity</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLLDEQhRtR8PkHXAVctzeVfrtT73gVZlDwsQ2ZdGWMxKRvkpbxl_h3TTuCO1epwDmniu9k2THQU6C0-RMA6hpyCl1OKyiLfL2V7UGVBuhKup1m2hR5VbNiN9sP4YXSJC3qvexjoaV3IfpRxtEjmb05M0btLHGKXGgr_DsRtieL0UQt3evgLNpIFsKuhMWA5D4imkD-jl7bFblHgzLqNyRzEdCTBSabXZ2Ru-f0z680mpTlejSTegqerQf0-jWFCkOehNG9mNYfZjtKmIBH3-9B9ng1e7i8zue3_24uz-e5LFkXc7WERrasqhhDkLVoGKuVkgpRYrdEikp2ilXI-rLrl6ICqqDssKgVhbYt6uIgO9nkDt79HzFE_uJGb9NKzqCFpmkTp6RiG9XEKnhUfEg3JzYcKJ8K4JsCeKLKvwrg62QqNqYwTGzQ_0T_4voEyD2NJQ</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Kundin, Julia</creator><creator>Ramazani, Ali</creator><creator>Prahl, Ulrich</creator><creator>Haase, Christian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190415</creationdate><title>Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation</title><author>Kundin, Julia ; Ramazani, Ali ; Prahl, Ulrich ; Haase, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-fb17c825522e1c6a7226ffcfeece9be0efc9f25e2d49dba510f149e36f0188363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dendritic structure</topic><topic>Directional solidification</topic><topic>Evolution</topic><topic>Iron</topic><topic>Laser beam melting</topic><topic>Manganese steels</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Numerical prediction</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundin, Julia</creatorcontrib><creatorcontrib>Ramazani, Ali</creatorcontrib><creatorcontrib>Prahl, Ulrich</creatorcontrib><creatorcontrib>Haase, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundin, Julia</au><au>Ramazani, Ali</au><au>Prahl, Ulrich</au><au>Haase, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-04-15</date><risdate>2019</risdate><volume>50</volume><issue>4</issue><spage>2022</spage><epage>2040</epage><pages>2022-2040</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In additive manufacturing processes, solidification velocities are extremely high in comparison to ordinary directional solidification. Therefore, the dependencies of the primary dendrite arm spacing (PDAS) on the process parameters deviate from the dependencies predicted by standard analytical methods. In this work, we investigate the microstructure evolution and element distribution in Fe-18.9Mn and Fe-18.5Mn-Al-C alloys solidified during the selective laser melting process. A quantitative multicomponent phase-field model verified by Green-function calculations (Karma, Rappel: Phys. Rev. E, 1998, 57, 4323) and the convergence analysis is used. The resulting non-standard dependencies of the PDAS on the process parameters in a wide range of solidification velocities are compared with analytical calculations. It is shown that the numerical values of the PDAS are similar to the values predicted by the Kurz–Fisher method for the low and intermediate solidification velocities and are smaller for the solidification velocities higher than 0.03 m/s. The PDAS and the Mn distribution in a Fe-18.5Mn-Al-C alloy are compared to the experimental results and a very good agreement is found.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05143-x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-04, Vol.50 (4), p.2022-2040
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2181778193
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Dendritic structure
Directional solidification
Evolution
Iron
Laser beam melting
Manganese steels
Materials Science
Mathematical models
Metallic Materials
Microstructure
Nanotechnology
Numerical prediction
Process parameters
Rapid prototyping
Solidification
Structural Materials
Surfaces and Interfaces
Thin Films
Velocity
title Microstructure Evolution of Binary and Multicomponent Manganese Steels During Selective Laser Melting: Phase-Field Modeling and Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20Evolution%20of%20Binary%20and%20Multicomponent%20Manganese%20Steels%20During%20Selective%20Laser%20Melting:%20Phase-Field%20Modeling%20and%20Experimental%20Validation&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Kundin,%20Julia&rft.date=2019-04-15&rft.volume=50&rft.issue=4&rft.spage=2022&rft.epage=2040&rft.pages=2022-2040&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05143-x&rft_dat=%3Cproquest_cross%3E2181778193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181778193&rft_id=info:pmid/&rfr_iscdi=true