Microstructure and calorimetric analysis of the UMn binary system

The microstructure, growth kinetics, and the high temperature phase equilibria of the UMn binary system are investigated using differential scanning calorimetry. Alloys with various compositions are prepared in a positive-pressure arc melting furnace in order to examine all possible phase changes wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2019-02, Vol.514, p.380-392
Hauptverfasser: Cea, A.K., Leenaers, A., Van den Berghe, S., Pardoen, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 380
container_title Journal of nuclear materials
container_volume 514
creator Cea, A.K.
Leenaers, A.
Van den Berghe, S.
Pardoen, T.
description The microstructure, growth kinetics, and the high temperature phase equilibria of the UMn binary system are investigated using differential scanning calorimetry. Alloys with various compositions are prepared in a positive-pressure arc melting furnace in order to examine all possible phase changes within the system. Phase composition and morphology were analyzed using XRD, SEM and EDX. Transformation temperatures and enthalpies have been assessed pertaining to: (i) allotropic phase changes αMn → βMn → γMn →δMn, (ii) two eutectic isotherms UMn2 + βMn → L and U6Mn + UMn2 → L and (iii) melting transitions as a function of composition. The development of the two intermetallic phases U6Mn and UMn2 are observed. A faceted morphology accompanies the formation of UMn2 in a matrix of U6Mn, while grain boundary decomposition is found of UMn2 in αMn. The transformation temperatures are compared to existing phase diagrams and are slightly higher than reported in literature. Experimental observations of the allotropic transformations of αMn to βMn and βMn to γMn are in agreement with a calculated phase diagram. The eutectic composition for UMn2 and αMn is found to be 55 wt%Mn, in agreement with previously reported values, while the enthalpy of fusion associated with this eutectic point is found to be 54 ± 6.5  kJ mol−1. The enthalpies of formation for the two intermetallic phases U6Mn and UMn2 are 71 ± 8.5 kJ mol−1 and 42 ± 5 kJ mol−1 respectively.
doi_str_mv 10.1016/j.jnucmat.2018.11.035
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2181755803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231151830905X</els_id><sourcerecordid>2181755803</sourcerecordid><originalsourceid>FETCH-LOGICAL-e843-e7ab5f86f5e175f7ec3e9c3246f334e2d2e59e8da378dd398d22264ba8876ab33</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKc_QQj43JqbNG36JGPoFDZ8mc8hTW4xZWs1SYX-ezu2pwOHw8fhI-QRWA4Myucu7_rRHk3KOQOVA-RMyCuyAFWJrFCcXZMFY5xnAkDekrsYO8aYrJlckNXO2zDEFEabxoDU9I5acxiCP2IK3s6FOUzRRzq0NH0j_dr1tPG9CRONU0x4vCc3rTlEfLjkkuzfXvfr92z7uflYr7YZqkJkWJlGtqpsJUIl2wqtwNoKXpStEAVyx1HWqJwRlXJO1MpxzsuiMUpVpWmEWJKnM_YnDL8jxqS7YQzzuag5qJkpFTutXs4rnJ_8eQw6Wo-9RecD2qTd4DUwfdKmO33Rpk_aNICetYl_Bkdj4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181755803</pqid></control><display><type>article</type><title>Microstructure and calorimetric analysis of the UMn binary system</title><source>Elsevier ScienceDirect Journals</source><creator>Cea, A.K. ; Leenaers, A. ; Van den Berghe, S. ; Pardoen, T.</creator><creatorcontrib>Cea, A.K. ; Leenaers, A. ; Van den Berghe, S. ; Pardoen, T.</creatorcontrib><description>The microstructure, growth kinetics, and the high temperature phase equilibria of the UMn binary system are investigated using differential scanning calorimetry. Alloys with various compositions are prepared in a positive-pressure arc melting furnace in order to examine all possible phase changes within the system. Phase composition and morphology were analyzed using XRD, SEM and EDX. Transformation temperatures and enthalpies have been assessed pertaining to: (i) allotropic phase changes αMn → βMn → γMn →δMn, (ii) two eutectic isotherms UMn2 + βMn → L and U6Mn + UMn2 → L and (iii) melting transitions as a function of composition. The development of the two intermetallic phases U6Mn and UMn2 are observed. A faceted morphology accompanies the formation of UMn2 in a matrix of U6Mn, while grain boundary decomposition is found of UMn2 in αMn. The transformation temperatures are compared to existing phase diagrams and are slightly higher than reported in literature. Experimental observations of the allotropic transformations of αMn to βMn and βMn to γMn are in agreement with a calculated phase diagram. The eutectic composition for UMn2 and αMn is found to be 55 wt%Mn, in agreement with previously reported values, while the enthalpy of fusion associated with this eutectic point is found to be 54 ± 6.5  kJ mol−1. The enthalpies of formation for the two intermetallic phases U6Mn and UMn2 are 71 ± 8.5 kJ mol−1 and 42 ± 5 kJ mol−1 respectively.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.11.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Allotropic transformation ; Alloy systems ; Binary system ; Calorimetry ; Differential scanning calorimetry ; Electric arc furnaces ; Enthalpy ; Eutectic composition ; Genetic transformation ; Grain boundaries ; Growth kinetics ; Heat measurement ; High temperature ; Intermetallic phases ; Kinetics ; Melting ; Melting furnaces ; Microstructure ; Morphology ; Phase composition ; Phase diagrams ; Phase equilibria ; Phase transitions ; Transformation temperature</subject><ispartof>Journal of nuclear materials, 2019-02, Vol.514, p.380-392</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2537-4645 ; 0000-0002-2060-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002231151830905X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids></links><search><creatorcontrib>Cea, A.K.</creatorcontrib><creatorcontrib>Leenaers, A.</creatorcontrib><creatorcontrib>Van den Berghe, S.</creatorcontrib><creatorcontrib>Pardoen, T.</creatorcontrib><title>Microstructure and calorimetric analysis of the UMn binary system</title><title>Journal of nuclear materials</title><description>The microstructure, growth kinetics, and the high temperature phase equilibria of the UMn binary system are investigated using differential scanning calorimetry. Alloys with various compositions are prepared in a positive-pressure arc melting furnace in order to examine all possible phase changes within the system. Phase composition and morphology were analyzed using XRD, SEM and EDX. Transformation temperatures and enthalpies have been assessed pertaining to: (i) allotropic phase changes αMn → βMn → γMn →δMn, (ii) two eutectic isotherms UMn2 + βMn → L and U6Mn + UMn2 → L and (iii) melting transitions as a function of composition. The development of the two intermetallic phases U6Mn and UMn2 are observed. A faceted morphology accompanies the formation of UMn2 in a matrix of U6Mn, while grain boundary decomposition is found of UMn2 in αMn. The transformation temperatures are compared to existing phase diagrams and are slightly higher than reported in literature. Experimental observations of the allotropic transformations of αMn to βMn and βMn to γMn are in agreement with a calculated phase diagram. The eutectic composition for UMn2 and αMn is found to be 55 wt%Mn, in agreement with previously reported values, while the enthalpy of fusion associated with this eutectic point is found to be 54 ± 6.5  kJ mol−1. The enthalpies of formation for the two intermetallic phases U6Mn and UMn2 are 71 ± 8.5 kJ mol−1 and 42 ± 5 kJ mol−1 respectively.</description><subject>Allotropic transformation</subject><subject>Alloy systems</subject><subject>Binary system</subject><subject>Calorimetry</subject><subject>Differential scanning calorimetry</subject><subject>Electric arc furnaces</subject><subject>Enthalpy</subject><subject>Eutectic composition</subject><subject>Genetic transformation</subject><subject>Grain boundaries</subject><subject>Growth kinetics</subject><subject>Heat measurement</subject><subject>High temperature</subject><subject>Intermetallic phases</subject><subject>Kinetics</subject><subject>Melting</subject><subject>Melting furnaces</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Phase composition</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Phase transitions</subject><subject>Transformation temperature</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKc_QQj43JqbNG36JGPoFDZ8mc8hTW4xZWs1SYX-ezu2pwOHw8fhI-QRWA4Myucu7_rRHk3KOQOVA-RMyCuyAFWJrFCcXZMFY5xnAkDekrsYO8aYrJlckNXO2zDEFEabxoDU9I5acxiCP2IK3s6FOUzRRzq0NH0j_dr1tPG9CRONU0x4vCc3rTlEfLjkkuzfXvfr92z7uflYr7YZqkJkWJlGtqpsJUIl2wqtwNoKXpStEAVyx1HWqJwRlXJO1MpxzsuiMUpVpWmEWJKnM_YnDL8jxqS7YQzzuag5qJkpFTutXs4rnJ_8eQw6Wo-9RecD2qTd4DUwfdKmO33Rpk_aNICetYl_Bkdj4w</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Cea, A.K.</creator><creator>Leenaers, A.</creator><creator>Van den Berghe, S.</creator><creator>Pardoen, T.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2537-4645</orcidid><orcidid>https://orcid.org/0000-0002-2060-5096</orcidid></search><sort><creationdate>201902</creationdate><title>Microstructure and calorimetric analysis of the UMn binary system</title><author>Cea, A.K. ; Leenaers, A. ; Van den Berghe, S. ; Pardoen, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e843-e7ab5f86f5e175f7ec3e9c3246f334e2d2e59e8da378dd398d22264ba8876ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Allotropic transformation</topic><topic>Alloy systems</topic><topic>Binary system</topic><topic>Calorimetry</topic><topic>Differential scanning calorimetry</topic><topic>Electric arc furnaces</topic><topic>Enthalpy</topic><topic>Eutectic composition</topic><topic>Genetic transformation</topic><topic>Grain boundaries</topic><topic>Growth kinetics</topic><topic>Heat measurement</topic><topic>High temperature</topic><topic>Intermetallic phases</topic><topic>Kinetics</topic><topic>Melting</topic><topic>Melting furnaces</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Phase composition</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Phase transitions</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cea, A.K.</creatorcontrib><creatorcontrib>Leenaers, A.</creatorcontrib><creatorcontrib>Van den Berghe, S.</creatorcontrib><creatorcontrib>Pardoen, T.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cea, A.K.</au><au>Leenaers, A.</au><au>Van den Berghe, S.</au><au>Pardoen, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and calorimetric analysis of the UMn binary system</atitle><jtitle>Journal of nuclear materials</jtitle><date>2019-02</date><risdate>2019</risdate><volume>514</volume><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The microstructure, growth kinetics, and the high temperature phase equilibria of the UMn binary system are investigated using differential scanning calorimetry. Alloys with various compositions are prepared in a positive-pressure arc melting furnace in order to examine all possible phase changes within the system. Phase composition and morphology were analyzed using XRD, SEM and EDX. Transformation temperatures and enthalpies have been assessed pertaining to: (i) allotropic phase changes αMn → βMn → γMn →δMn, (ii) two eutectic isotherms UMn2 + βMn → L and U6Mn + UMn2 → L and (iii) melting transitions as a function of composition. The development of the two intermetallic phases U6Mn and UMn2 are observed. A faceted morphology accompanies the formation of UMn2 in a matrix of U6Mn, while grain boundary decomposition is found of UMn2 in αMn. The transformation temperatures are compared to existing phase diagrams and are slightly higher than reported in literature. Experimental observations of the allotropic transformations of αMn to βMn and βMn to γMn are in agreement with a calculated phase diagram. The eutectic composition for UMn2 and αMn is found to be 55 wt%Mn, in agreement with previously reported values, while the enthalpy of fusion associated with this eutectic point is found to be 54 ± 6.5  kJ mol−1. The enthalpies of formation for the two intermetallic phases U6Mn and UMn2 are 71 ± 8.5 kJ mol−1 and 42 ± 5 kJ mol−1 respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.11.035</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2537-4645</orcidid><orcidid>https://orcid.org/0000-0002-2060-5096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2019-02, Vol.514, p.380-392
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2181755803
source Elsevier ScienceDirect Journals
subjects Allotropic transformation
Alloy systems
Binary system
Calorimetry
Differential scanning calorimetry
Electric arc furnaces
Enthalpy
Eutectic composition
Genetic transformation
Grain boundaries
Growth kinetics
Heat measurement
High temperature
Intermetallic phases
Kinetics
Melting
Melting furnaces
Microstructure
Morphology
Phase composition
Phase diagrams
Phase equilibria
Phase transitions
Transformation temperature
title Microstructure and calorimetric analysis of the UMn binary system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20calorimetric%20analysis%20of%20the%20UMn%20binary%20system&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Cea,%20A.K.&rft.date=2019-02&rft.volume=514&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.11.035&rft_dat=%3Cproquest_elsev%3E2181755803%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181755803&rft_id=info:pmid/&rft_els_id=S002231151830905X&rfr_iscdi=true