Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints
Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2019-04, Vol.266, p.696-706 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | |
container_start_page | 696 |
container_title | Journal of materials processing technology |
container_volume | 266 |
creator | Mou, Gang Hua, Xueming Wu, Dongsheng Huang, Ye Lin, Wenhu Xu, Peizhi |
description | Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam. |
doi_str_mv | 10.1016/j.jmatprotec.2018.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181752560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618304163</els_id><sourcerecordid>2181752560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</originalsourceid><addsrcrecordid>eNqFUctq3DAUFSWBTh7_IOgmWdi98kOSl-3QF0zoJslWyNJ1IuOxJpKckn5MvzUyE-gyq3vhPC7nHkIog5IB45_HctzrdAg-oSkrYLKErgTWfSAbJkVdNEI0J2QDXdUUwGr-kZzFOAIwAVJuyL8bZ4KPKSwmLQGpni3do3nUszN6otn3gCE5jNQP1PhpRVMGUtBzHDDQPzhZNz8UfdB_81xpyaUsX_ZUT5N_oVe32-aaJk9j0m6eMMa8IU70qoZmd02XuOrui_ioD2jpQ_D-Geno3ZziBTkd9BTx8m2ek7vv3263P4vd7x-_tl92hWlYlQrd8RZbUWvOamla3SO2fQuVFZ1tQCA3vQXURnDJK-RdZzIbeyFtDRUMTX1OPh19c-CnBWNSo1_CnE-qikkm2qrlkFnyyFpfFgMO6hDcXocXxUCtbahR_W9DrW0o6FRuI0u_HqWYUzw7DCoah7NB6wKapKx375u8AmMkm0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181752560</pqid></control><display><type>article</type><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><source>Elsevier ScienceDirect Journals</source><creator>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</creator><creatorcontrib>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</creatorcontrib><description>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.09.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Bonded joints ; Bonding strength ; Brazing alloys ; Cold welding ; Copper ; Dissimilar joint ; Enthalpy ; Interfacial bonding ; Intermetallic compounds ; Iron ; Mechanical properties ; Mechanical property ; Microstructure ; Silicon ; Stainless steel ; Tensile strength ; Thickness ; Titanium alloy ; Titanium alloys ; Titanium base alloys ; Ultimate tensile strength ; Welding-brazing ; Wire</subject><ispartof>Journal of materials processing technology, 2019-04, Vol.266, p.696-706</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</citedby><cites>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013618304163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mou, Gang</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><creatorcontrib>Wu, Dongsheng</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Lin, Wenhu</creatorcontrib><creatorcontrib>Xu, Peizhi</creatorcontrib><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><title>Journal of materials processing technology</title><description>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</description><subject>Austenitic stainless steels</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Brazing alloys</subject><subject>Cold welding</subject><subject>Copper</subject><subject>Dissimilar joint</subject><subject>Enthalpy</subject><subject>Interfacial bonding</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Microstructure</subject><subject>Silicon</subject><subject>Stainless steel</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Titanium alloy</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><subject>Welding-brazing</subject><subject>Wire</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUctq3DAUFSWBTh7_IOgmWdi98kOSl-3QF0zoJslWyNJ1IuOxJpKckn5MvzUyE-gyq3vhPC7nHkIog5IB45_HctzrdAg-oSkrYLKErgTWfSAbJkVdNEI0J2QDXdUUwGr-kZzFOAIwAVJuyL8bZ4KPKSwmLQGpni3do3nUszN6otn3gCE5jNQP1PhpRVMGUtBzHDDQPzhZNz8UfdB_81xpyaUsX_ZUT5N_oVe32-aaJk9j0m6eMMa8IU70qoZmd02XuOrui_ioD2jpQ_D-Geno3ZziBTkd9BTx8m2ek7vv3263P4vd7x-_tl92hWlYlQrd8RZbUWvOamla3SO2fQuVFZ1tQCA3vQXURnDJK-RdZzIbeyFtDRUMTX1OPh19c-CnBWNSo1_CnE-qikkm2qrlkFnyyFpfFgMO6hDcXocXxUCtbahR_W9DrW0o6FRuI0u_HqWYUzw7DCoah7NB6wKapKx375u8AmMkm0A</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Mou, Gang</creator><creator>Hua, Xueming</creator><creator>Wu, Dongsheng</creator><creator>Huang, Ye</creator><creator>Lin, Wenhu</creator><creator>Xu, Peizhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201904</creationdate><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><author>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Brazing alloys</topic><topic>Cold welding</topic><topic>Copper</topic><topic>Dissimilar joint</topic><topic>Enthalpy</topic><topic>Interfacial bonding</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Microstructure</topic><topic>Silicon</topic><topic>Stainless steel</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Titanium alloy</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><topic>Welding-brazing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mou, Gang</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><creatorcontrib>Wu, Dongsheng</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Lin, Wenhu</creatorcontrib><creatorcontrib>Xu, Peizhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mou, Gang</au><au>Hua, Xueming</au><au>Wu, Dongsheng</au><au>Huang, Ye</au><au>Lin, Wenhu</au><au>Xu, Peizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-04</date><risdate>2019</risdate><volume>266</volume><spage>696</spage><epage>706</epage><pages>696-706</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.09.019</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2019-04, Vol.266, p.696-706 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_proquest_journals_2181752560 |
source | Elsevier ScienceDirect Journals |
subjects | Austenitic stainless steels Bonded joints Bonding strength Brazing alloys Cold welding Copper Dissimilar joint Enthalpy Interfacial bonding Intermetallic compounds Iron Mechanical properties Mechanical property Microstructure Silicon Stainless steel Tensile strength Thickness Titanium alloy Titanium alloys Titanium base alloys Ultimate tensile strength Welding-brazing Wire |
title | Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20mechanical%20properties%20of%20cold%20metal%20transfer%20welding-brazing%20of%20titanium%20alloy%20(TC4)%20to%20stainless%20steel%20(304L)%20using%20V-shaped%20groove%20joints&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Mou,%20Gang&rft.date=2019-04&rft.volume=266&rft.spage=696&rft.epage=706&rft.pages=696-706&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.09.019&rft_dat=%3Cproquest_cross%3E2181752560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181752560&rft_id=info:pmid/&rft_els_id=S0924013618304163&rfr_iscdi=true |