Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints

Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2019-04, Vol.266, p.696-706
Hauptverfasser: Mou, Gang, Hua, Xueming, Wu, Dongsheng, Huang, Ye, Lin, Wenhu, Xu, Peizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue
container_start_page 696
container_title Journal of materials processing technology
container_volume 266
creator Mou, Gang
Hua, Xueming
Wu, Dongsheng
Huang, Ye
Lin, Wenhu
Xu, Peizhi
description Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.
doi_str_mv 10.1016/j.jmatprotec.2018.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181752560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618304163</els_id><sourcerecordid>2181752560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</originalsourceid><addsrcrecordid>eNqFUctq3DAUFSWBTh7_IOgmWdi98kOSl-3QF0zoJslWyNJ1IuOxJpKckn5MvzUyE-gyq3vhPC7nHkIog5IB45_HctzrdAg-oSkrYLKErgTWfSAbJkVdNEI0J2QDXdUUwGr-kZzFOAIwAVJuyL8bZ4KPKSwmLQGpni3do3nUszN6otn3gCE5jNQP1PhpRVMGUtBzHDDQPzhZNz8UfdB_81xpyaUsX_ZUT5N_oVe32-aaJk9j0m6eMMa8IU70qoZmd02XuOrui_ioD2jpQ_D-Geno3ZziBTkd9BTx8m2ek7vv3263P4vd7x-_tl92hWlYlQrd8RZbUWvOamla3SO2fQuVFZ1tQCA3vQXURnDJK-RdZzIbeyFtDRUMTX1OPh19c-CnBWNSo1_CnE-qikkm2qrlkFnyyFpfFgMO6hDcXocXxUCtbahR_W9DrW0o6FRuI0u_HqWYUzw7DCoah7NB6wKapKx375u8AmMkm0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181752560</pqid></control><display><type>article</type><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><source>Elsevier ScienceDirect Journals</source><creator>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</creator><creatorcontrib>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</creatorcontrib><description>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.09.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Bonded joints ; Bonding strength ; Brazing alloys ; Cold welding ; Copper ; Dissimilar joint ; Enthalpy ; Interfacial bonding ; Intermetallic compounds ; Iron ; Mechanical properties ; Mechanical property ; Microstructure ; Silicon ; Stainless steel ; Tensile strength ; Thickness ; Titanium alloy ; Titanium alloys ; Titanium base alloys ; Ultimate tensile strength ; Welding-brazing ; Wire</subject><ispartof>Journal of materials processing technology, 2019-04, Vol.266, p.696-706</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</citedby><cites>FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013618304163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mou, Gang</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><creatorcontrib>Wu, Dongsheng</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Lin, Wenhu</creatorcontrib><creatorcontrib>Xu, Peizhi</creatorcontrib><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><title>Journal of materials processing technology</title><description>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</description><subject>Austenitic stainless steels</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Brazing alloys</subject><subject>Cold welding</subject><subject>Copper</subject><subject>Dissimilar joint</subject><subject>Enthalpy</subject><subject>Interfacial bonding</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Microstructure</subject><subject>Silicon</subject><subject>Stainless steel</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Titanium alloy</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><subject>Welding-brazing</subject><subject>Wire</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUctq3DAUFSWBTh7_IOgmWdi98kOSl-3QF0zoJslWyNJ1IuOxJpKckn5MvzUyE-gyq3vhPC7nHkIog5IB45_HctzrdAg-oSkrYLKErgTWfSAbJkVdNEI0J2QDXdUUwGr-kZzFOAIwAVJuyL8bZ4KPKSwmLQGpni3do3nUszN6otn3gCE5jNQP1PhpRVMGUtBzHDDQPzhZNz8UfdB_81xpyaUsX_ZUT5N_oVe32-aaJk9j0m6eMMa8IU70qoZmd02XuOrui_ioD2jpQ_D-Geno3ZziBTkd9BTx8m2ek7vv3263P4vd7x-_tl92hWlYlQrd8RZbUWvOamla3SO2fQuVFZ1tQCA3vQXURnDJK-RdZzIbeyFtDRUMTX1OPh19c-CnBWNSo1_CnE-qikkm2qrlkFnyyFpfFgMO6hDcXocXxUCtbahR_W9DrW0o6FRuI0u_HqWYUzw7DCoah7NB6wKapKx375u8AmMkm0A</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Mou, Gang</creator><creator>Hua, Xueming</creator><creator>Wu, Dongsheng</creator><creator>Huang, Ye</creator><creator>Lin, Wenhu</creator><creator>Xu, Peizhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201904</creationdate><title>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</title><author>Mou, Gang ; Hua, Xueming ; Wu, Dongsheng ; Huang, Ye ; Lin, Wenhu ; Xu, Peizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a965e573a6138c5abee5b502d79d407e6cbd0eac76862e699ce57eb78d3020f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Brazing alloys</topic><topic>Cold welding</topic><topic>Copper</topic><topic>Dissimilar joint</topic><topic>Enthalpy</topic><topic>Interfacial bonding</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Microstructure</topic><topic>Silicon</topic><topic>Stainless steel</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Titanium alloy</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><topic>Welding-brazing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mou, Gang</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><creatorcontrib>Wu, Dongsheng</creatorcontrib><creatorcontrib>Huang, Ye</creatorcontrib><creatorcontrib>Lin, Wenhu</creatorcontrib><creatorcontrib>Xu, Peizhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mou, Gang</au><au>Hua, Xueming</au><au>Wu, Dongsheng</au><au>Huang, Ye</au><au>Lin, Wenhu</au><au>Xu, Peizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-04</date><risdate>2019</risdate><volume>266</volume><spage>696</spage><epage>706</epage><pages>696-706</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Wire feed speeds of 3.5, 4.5, and 5.5 m/min and offset positions of 1 and 2 were employed for this study with an ERCuSi-A weld wire. The microstructures of the joints, which include a Cu/Ti interface layer consisting of Ti2Cu, TiCu, and AlCu2Ti, a Cu-matrix seam consisting of Cu and petal-shaped Fe-Si-Ti intermetallics, and a Cu/Fe interface layer consisting of α-Fe and Cu, were studied. The formation enthalpy calculated from the Miedema model can explained the microstructure evolution mechanism. The interface thickness and ultimate tensile strength were found to increase with wire feed speed. The highest tensile strength of the joint was 294 MPa, fracturing at the Cu/Ti interface. Offsetting the welding torch to the TC4 side increased the amount and size of the Fe-Si-Ti intermetallics, degrading the tensile strength. Four fracture modes were proposed to differentiate the crack propagations in the joints, which were determined by the interfacial bonding strength and the Fe-Si-Ti intermetallics in the weld seam.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.09.019</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2019-04, Vol.266, p.696-706
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2181752560
source Elsevier ScienceDirect Journals
subjects Austenitic stainless steels
Bonded joints
Bonding strength
Brazing alloys
Cold welding
Copper
Dissimilar joint
Enthalpy
Interfacial bonding
Intermetallic compounds
Iron
Mechanical properties
Mechanical property
Microstructure
Silicon
Stainless steel
Tensile strength
Thickness
Titanium alloy
Titanium alloys
Titanium base alloys
Ultimate tensile strength
Welding-brazing
Wire
title Microstructure and mechanical properties of cold metal transfer welding-brazing of titanium alloy (TC4) to stainless steel (304L) using V-shaped groove joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20mechanical%20properties%20of%20cold%20metal%20transfer%20welding-brazing%20of%20titanium%20alloy%20(TC4)%20to%20stainless%20steel%20(304L)%20using%20V-shaped%20groove%20joints&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Mou,%20Gang&rft.date=2019-04&rft.volume=266&rft.spage=696&rft.epage=706&rft.pages=696-706&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.09.019&rft_dat=%3Cproquest_cross%3E2181752560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181752560&rft_id=info:pmid/&rft_els_id=S0924013618304163&rfr_iscdi=true