Deep Neural Network Compression for Aircraft Collision Avoidance Systems

One approach to designing decision-making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2019-03, Vol.42 (3), p.598-608
Hauptverfasser: Julian, Kyle D., Kochenderfer, Mykel J., Owen, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 3
container_start_page 598
container_title Journal of guidance, control, and dynamics
container_volume 42
creator Julian, Kyle D.
Kochenderfer, Mykel J.
Owen, Michael P.
description One approach to designing decision-making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been used in the development of the Airborne Collision Avoidance System X family of collision avoidance systems for manned and unmanned aircraft, but the high-dimensionality of the state space leads to very large tables. To improve storage efficiency, a deep neural network is used to approximate the table. With the use of an asymmetric loss function and a gradient descent algorithm, the parameters for this network can be trained to provide accurate estimates of table values while preserving the relative preferences of the possible advisories for each state. By training multiple networks to represent subtables, the network also decreases the required runtime for computing the collision avoidance advisory. Simulation studies show that the network improves the safety and efficiency of the collision avoidance system. Because only the network parameters need to be stored, the required storage space is reduced by a factor of 1000, enabling the collision avoidance system to operate using current avionics systems.
doi_str_mv 10.2514/1.G003724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181314077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161688373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-cda2bc4df0404b90b1a287918433d33d02734dcefb0ec7e7aab0d176df9118ed3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFYPfoOAJw-pM5lNdnMsVVuh6EE9h83-gdS0G3cTpd_eaHsWBh7M-_EePMauEWZZjvwOZ0sAEhk_YRPMiVKSkp-yCQjCNIcSztlFjBsApALFhK3ure2SZzsE1Y7Sf_vwkSz8tgs2xsbvEudDMm-CDsr1o9G2zd97_uUbo3baJq_72NttvGRnTrXRXh11yt4fH94Wq3T9snxazNeppizvU21UVmtuHHDgdQk1qkyKEiUnMuNBJogbbV0NVgsrlKrBoCiMKxGlNTRlN4fcLvjPwca-2vgh7MbKKkOJhByE-J8qsJCSBI3U7YHSwccYrKu60GxV2FcI1e-cFVbHOekHDHZmAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161688373</pqid></control><display><type>article</type><title>Deep Neural Network Compression for Aircraft Collision Avoidance Systems</title><source>Alma/SFX Local Collection</source><creator>Julian, Kyle D. ; Kochenderfer, Mykel J. ; Owen, Michael P.</creator><creatorcontrib>Julian, Kyle D. ; Kochenderfer, Mykel J. ; Owen, Michael P.</creatorcontrib><description>One approach to designing decision-making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been used in the development of the Airborne Collision Avoidance System X family of collision avoidance systems for manned and unmanned aircraft, but the high-dimensionality of the state space leads to very large tables. To improve storage efficiency, a deep neural network is used to approximate the table. With the use of an asymmetric loss function and a gradient descent algorithm, the parameters for this network can be trained to provide accurate estimates of table values while preserving the relative preferences of the possible advisories for each state. By training multiple networks to represent subtables, the network also decreases the required runtime for computing the collision avoidance advisory. Simulation studies show that the network improves the safety and efficiency of the collision avoidance system. Because only the network parameters need to be stored, the required storage space is reduced by a factor of 1000, enabling the collision avoidance system to operate using current avionics systems.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G003724</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Aircraft accidents ; Algorithms ; Artificial neural networks ; Avionics ; Collision avoidance ; Collision dynamics ; Collisions ; Computer simulation ; Decision making ; Dynamic programming ; Markov processes ; Neural networks ; Parameters ; Tables ; Traffic accidents &amp; safety ; Unmanned aircraft</subject><ispartof>Journal of guidance, control, and dynamics, 2019-03, Vol.42 (3), p.598-608</ispartof><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-cda2bc4df0404b90b1a287918433d33d02734dcefb0ec7e7aab0d176df9118ed3</citedby><cites>FETCH-LOGICAL-c325t-cda2bc4df0404b90b1a287918433d33d02734dcefb0ec7e7aab0d176df9118ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Julian, Kyle D.</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><creatorcontrib>Owen, Michael P.</creatorcontrib><title>Deep Neural Network Compression for Aircraft Collision Avoidance Systems</title><title>Journal of guidance, control, and dynamics</title><description>One approach to designing decision-making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been used in the development of the Airborne Collision Avoidance System X family of collision avoidance systems for manned and unmanned aircraft, but the high-dimensionality of the state space leads to very large tables. To improve storage efficiency, a deep neural network is used to approximate the table. With the use of an asymmetric loss function and a gradient descent algorithm, the parameters for this network can be trained to provide accurate estimates of table values while preserving the relative preferences of the possible advisories for each state. By training multiple networks to represent subtables, the network also decreases the required runtime for computing the collision avoidance advisory. Simulation studies show that the network improves the safety and efficiency of the collision avoidance system. Because only the network parameters need to be stored, the required storage space is reduced by a factor of 1000, enabling the collision avoidance system to operate using current avionics systems.</description><subject>Aircraft</subject><subject>Aircraft accidents</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Avionics</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Collisions</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Dynamic programming</subject><subject>Markov processes</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Tables</subject><subject>Traffic accidents &amp; safety</subject><subject>Unmanned aircraft</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFYPfoOAJw-pM5lNdnMsVVuh6EE9h83-gdS0G3cTpd_eaHsWBh7M-_EePMauEWZZjvwOZ0sAEhk_YRPMiVKSkp-yCQjCNIcSztlFjBsApALFhK3ure2SZzsE1Y7Sf_vwkSz8tgs2xsbvEudDMm-CDsr1o9G2zd97_uUbo3baJq_72NttvGRnTrXRXh11yt4fH94Wq3T9snxazNeppizvU21UVmtuHHDgdQk1qkyKEiUnMuNBJogbbV0NVgsrlKrBoCiMKxGlNTRlN4fcLvjPwca-2vgh7MbKKkOJhByE-J8qsJCSBI3U7YHSwccYrKu60GxV2FcI1e-cFVbHOekHDHZmAA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Julian, Kyle D.</creator><creator>Kochenderfer, Mykel J.</creator><creator>Owen, Michael P.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190301</creationdate><title>Deep Neural Network Compression for Aircraft Collision Avoidance Systems</title><author>Julian, Kyle D. ; Kochenderfer, Mykel J. ; Owen, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-cda2bc4df0404b90b1a287918433d33d02734dcefb0ec7e7aab0d176df9118ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Aircraft accidents</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Avionics</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Collisions</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Dynamic programming</topic><topic>Markov processes</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Tables</topic><topic>Traffic accidents &amp; safety</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julian, Kyle D.</creatorcontrib><creatorcontrib>Kochenderfer, Mykel J.</creatorcontrib><creatorcontrib>Owen, Michael P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julian, Kyle D.</au><au>Kochenderfer, Mykel J.</au><au>Owen, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network Compression for Aircraft Collision Avoidance Systems</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>42</volume><issue>3</issue><spage>598</spage><epage>608</epage><pages>598-608</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>One approach to designing decision-making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been used in the development of the Airborne Collision Avoidance System X family of collision avoidance systems for manned and unmanned aircraft, but the high-dimensionality of the state space leads to very large tables. To improve storage efficiency, a deep neural network is used to approximate the table. With the use of an asymmetric loss function and a gradient descent algorithm, the parameters for this network can be trained to provide accurate estimates of table values while preserving the relative preferences of the possible advisories for each state. By training multiple networks to represent subtables, the network also decreases the required runtime for computing the collision avoidance advisory. Simulation studies show that the network improves the safety and efficiency of the collision avoidance system. Because only the network parameters need to be stored, the required storage space is reduced by a factor of 1000, enabling the collision avoidance system to operate using current avionics systems.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G003724</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2019-03, Vol.42 (3), p.598-608
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_journals_2181314077
source Alma/SFX Local Collection
subjects Aircraft
Aircraft accidents
Algorithms
Artificial neural networks
Avionics
Collision avoidance
Collision dynamics
Collisions
Computer simulation
Decision making
Dynamic programming
Markov processes
Neural networks
Parameters
Tables
Traffic accidents & safety
Unmanned aircraft
title Deep Neural Network Compression for Aircraft Collision Avoidance Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20Compression%20for%20Aircraft%20Collision%20Avoidance%20Systems&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Julian,%20Kyle%20D.&rft.date=2019-03-01&rft.volume=42&rft.issue=3&rft.spage=598&rft.epage=608&rft.pages=598-608&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G003724&rft_dat=%3Cproquest_cross%3E2161688373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161688373&rft_id=info:pmid/&rfr_iscdi=true