Syntactic aspects of hypergraph polytopes
This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to per...
Gespeichert in:
Veröffentlicht in: | Journal of homotopy and related structures 2019-03, Vol.14 (1), p.235-279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 1 |
container_start_page | 235 |
container_title | Journal of homotopy and related structures |
container_volume | 14 |
creator | Curien, Pierre-Louis Obradović, Jovana Ivanović, Jelena |
description | This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity. |
doi_str_mv | 10.1007/s40062-018-0211-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181121145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181121145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElHpD2CLxMRguPcmbuwRVbykSgzAbDmu3YdKYux0yL_HVZCYuMtZzneu9DF2jXCHAM19qgEWxAElB0Lk6owVKJA4SYXnrCBUFZc1NJdsntIe8lVCqLop2O372A3GDjtbmhScHVLZ-3I7Bhc30YRtGfrDOPTBpSt24c0huflvztjn0-PH8oWv3p5flw8rbiuhBi6dN0p5ar10JFpFRlo06BFpbZXwYNayMQsloG1qsgDGVyAdGg9WkRPVjN1MuyH230eXBr3vj7HLLzWhzDOI9amFU8vGPqXovA5x92XiqBH0SYqepOgsRZ-kaJUZmpiUu93Gxb_l_6EfSh5jVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181121145</pqid></control><display><type>article</type><title>Syntactic aspects of hypergraph polytopes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</creator><creatorcontrib>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</creatorcontrib><description>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</description><identifier>ISSN: 2193-8407</identifier><identifier>EISSN: 1512-2891</identifier><identifier>DOI: 10.1007/s40062-018-0211-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Topology ; Functional Analysis ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Number Theory ; Polytopes</subject><ispartof>Journal of homotopy and related structures, 2019-03, Vol.14 (1), p.235-279</ispartof><rights>Tbilisi Centre for Mathematical Sciences 2018</rights><rights>Tbilisi Centre for Mathematical Sciences 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</citedby><cites>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40062-018-0211-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40062-018-0211-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Curien, Pierre-Louis</creatorcontrib><creatorcontrib>Obradović, Jovana</creatorcontrib><creatorcontrib>Ivanović, Jelena</creatorcontrib><title>Syntactic aspects of hypergraph polytopes</title><title>Journal of homotopy and related structures</title><addtitle>J. Homotopy Relat. Struct</addtitle><description>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</description><subject>Algebra</subject><subject>Algebraic Topology</subject><subject>Functional Analysis</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Polytopes</subject><issn>2193-8407</issn><issn>1512-2891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EElHpD2CLxMRguPcmbuwRVbykSgzAbDmu3YdKYux0yL_HVZCYuMtZzneu9DF2jXCHAM19qgEWxAElB0Lk6owVKJA4SYXnrCBUFZc1NJdsntIe8lVCqLop2O372A3GDjtbmhScHVLZ-3I7Bhc30YRtGfrDOPTBpSt24c0huflvztjn0-PH8oWv3p5flw8rbiuhBi6dN0p5ar10JFpFRlo06BFpbZXwYNayMQsloG1qsgDGVyAdGg9WkRPVjN1MuyH230eXBr3vj7HLLzWhzDOI9amFU8vGPqXovA5x92XiqBH0SYqepOgsRZ-kaJUZmpiUu93Gxb_l_6EfSh5jVA</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Curien, Pierre-Louis</creator><creator>Obradović, Jovana</creator><creator>Ivanović, Jelena</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190307</creationdate><title>Syntactic aspects of hypergraph polytopes</title><author>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algebraic Topology</topic><topic>Functional Analysis</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curien, Pierre-Louis</creatorcontrib><creatorcontrib>Obradović, Jovana</creatorcontrib><creatorcontrib>Ivanović, Jelena</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of homotopy and related structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curien, Pierre-Louis</au><au>Obradović, Jovana</au><au>Ivanović, Jelena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntactic aspects of hypergraph polytopes</atitle><jtitle>Journal of homotopy and related structures</jtitle><stitle>J. Homotopy Relat. Struct</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>235</spage><epage>279</epage><pages>235-279</pages><issn>2193-8407</issn><eissn>1512-2891</eissn><abstract>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40062-018-0211-9</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-8407 |
ispartof | Journal of homotopy and related structures, 2019-03, Vol.14 (1), p.235-279 |
issn | 2193-8407 1512-2891 |
language | eng |
recordid | cdi_proquest_journals_2181121145 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algebraic Topology Functional Analysis Graph theory Graphs Mathematics Mathematics and Statistics Number Theory Polytopes |
title | Syntactic aspects of hypergraph polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntactic%20aspects%20of%20hypergraph%20polytopes&rft.jtitle=Journal%20of%20homotopy%20and%20related%20structures&rft.au=Curien,%20Pierre-Louis&rft.date=2019-03-07&rft.volume=14&rft.issue=1&rft.spage=235&rft.epage=279&rft.pages=235-279&rft.issn=2193-8407&rft.eissn=1512-2891&rft_id=info:doi/10.1007/s40062-018-0211-9&rft_dat=%3Cproquest_cross%3E2181121145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181121145&rft_id=info:pmid/&rfr_iscdi=true |