Syntactic aspects of hypergraph polytopes

This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of homotopy and related structures 2019-03, Vol.14 (1), p.235-279
Hauptverfasser: Curien, Pierre-Louis, Obradović, Jovana, Ivanović, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 1
container_start_page 235
container_title Journal of homotopy and related structures
container_volume 14
creator Curien, Pierre-Louis
Obradović, Jovana
Ivanović, Jelena
description This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.
doi_str_mv 10.1007/s40062-018-0211-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2181121145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2181121145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElHpD2CLxMRguPcmbuwRVbykSgzAbDmu3YdKYux0yL_HVZCYuMtZzneu9DF2jXCHAM19qgEWxAElB0Lk6owVKJA4SYXnrCBUFZc1NJdsntIe8lVCqLop2O372A3GDjtbmhScHVLZ-3I7Bhc30YRtGfrDOPTBpSt24c0huflvztjn0-PH8oWv3p5flw8rbiuhBi6dN0p5ar10JFpFRlo06BFpbZXwYNayMQsloG1qsgDGVyAdGg9WkRPVjN1MuyH230eXBr3vj7HLLzWhzDOI9amFU8vGPqXovA5x92XiqBH0SYqepOgsRZ-kaJUZmpiUu93Gxb_l_6EfSh5jVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181121145</pqid></control><display><type>article</type><title>Syntactic aspects of hypergraph polytopes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</creator><creatorcontrib>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</creatorcontrib><description>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</description><identifier>ISSN: 2193-8407</identifier><identifier>EISSN: 1512-2891</identifier><identifier>DOI: 10.1007/s40062-018-0211-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Topology ; Functional Analysis ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Number Theory ; Polytopes</subject><ispartof>Journal of homotopy and related structures, 2019-03, Vol.14 (1), p.235-279</ispartof><rights>Tbilisi Centre for Mathematical Sciences 2018</rights><rights>Tbilisi Centre for Mathematical Sciences 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</citedby><cites>FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40062-018-0211-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40062-018-0211-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Curien, Pierre-Louis</creatorcontrib><creatorcontrib>Obradović, Jovana</creatorcontrib><creatorcontrib>Ivanović, Jelena</creatorcontrib><title>Syntactic aspects of hypergraph polytopes</title><title>Journal of homotopy and related structures</title><addtitle>J. Homotopy Relat. Struct</addtitle><description>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</description><subject>Algebra</subject><subject>Algebraic Topology</subject><subject>Functional Analysis</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Polytopes</subject><issn>2193-8407</issn><issn>1512-2891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EElHpD2CLxMRguPcmbuwRVbykSgzAbDmu3YdKYux0yL_HVZCYuMtZzneu9DF2jXCHAM19qgEWxAElB0Lk6owVKJA4SYXnrCBUFZc1NJdsntIe8lVCqLop2O372A3GDjtbmhScHVLZ-3I7Bhc30YRtGfrDOPTBpSt24c0huflvztjn0-PH8oWv3p5flw8rbiuhBi6dN0p5ar10JFpFRlo06BFpbZXwYNayMQsloG1qsgDGVyAdGg9WkRPVjN1MuyH230eXBr3vj7HLLzWhzDOI9amFU8vGPqXovA5x92XiqBH0SYqepOgsRZ-kaJUZmpiUu93Gxb_l_6EfSh5jVA</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Curien, Pierre-Louis</creator><creator>Obradović, Jovana</creator><creator>Ivanović, Jelena</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190307</creationdate><title>Syntactic aspects of hypergraph polytopes</title><author>Curien, Pierre-Louis ; Obradović, Jovana ; Ivanović, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8efa99f2bf8e25b92a8c1a1f112dc95f0ad87a6950b742c00af308e1af0c92e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algebraic Topology</topic><topic>Functional Analysis</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curien, Pierre-Louis</creatorcontrib><creatorcontrib>Obradović, Jovana</creatorcontrib><creatorcontrib>Ivanović, Jelena</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of homotopy and related structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curien, Pierre-Louis</au><au>Obradović, Jovana</au><au>Ivanović, Jelena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntactic aspects of hypergraph polytopes</atitle><jtitle>Journal of homotopy and related structures</jtitle><stitle>J. Homotopy Relat. Struct</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>235</spage><epage>279</epage><pages>235-279</pages><issn>2193-8407</issn><eissn>1512-2891</eissn><abstract>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petrić to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petrić’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40062-018-0211-9</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2193-8407
ispartof Journal of homotopy and related structures, 2019-03, Vol.14 (1), p.235-279
issn 2193-8407
1512-2891
language eng
recordid cdi_proquest_journals_2181121145
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algebraic Topology
Functional Analysis
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Number Theory
Polytopes
title Syntactic aspects of hypergraph polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntactic%20aspects%20of%20hypergraph%20polytopes&rft.jtitle=Journal%20of%20homotopy%20and%20related%20structures&rft.au=Curien,%20Pierre-Louis&rft.date=2019-03-07&rft.volume=14&rft.issue=1&rft.spage=235&rft.epage=279&rft.pages=235-279&rft.issn=2193-8407&rft.eissn=1512-2891&rft_id=info:doi/10.1007/s40062-018-0211-9&rft_dat=%3Cproquest_cross%3E2181121145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181121145&rft_id=info:pmid/&rfr_iscdi=true