Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway

Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the maj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Apoptosis (London) 2019-06, Vol.24 (5-6), p.414-433
Hauptverfasser: Datta, Satabdi, Choudhury, Diptiman, Das, Amlan, Mukherjee, Dipanwita Das, Dasgupta, Moumita, Bandopadhyay, Shreya, Chakrabarti, Gopal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue 5-6
container_start_page 414
container_title Apoptosis (London)
container_volume 24
creator Datta, Satabdi
Choudhury, Diptiman
Das, Amlan
Mukherjee, Dipanwita Das
Dasgupta, Moumita
Bandopadhyay, Shreya
Chakrabarti, Gopal
description Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/β-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.
doi_str_mv 10.1007/s10495-019-01526-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2180264809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2180264809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290y-fdb152cdd30787649db53d61d3a800fc4bd73b66f46c7108ec84d66638aca45d3</originalsourceid><addsrcrecordid>eNp9kUFu1TAQhiMEoqVwARbIEutQO04cZ_lUQUGqVKmAxC6a2M6LK8cOttOSa_UYLDgT074COxaWrZl_vhnPXxSvGX3HKG1PE6N115SUdXiaSpTbk-KYNS0vRdt8e4pvLmgpmWyOihcpXVNKueT18-KI01a0VLbHxc_dmsMywX4j1k92sNkGT25tnoiaXIjh-2q9IdHcmJgTWUA5m-GHcRhKNmXwyhDwmkDOxq-QTSKzyYCZbBVZAkazBYd0Mq0zeOKDTzM4R9zq9wS08UFBVNaHGciuqTuijHOJ3FggV5efkaYtYjWZg14dPMwXRvLrrlQY9shdIE-3sL0sno3gknn1eJ8UXz-8_3L2sby4PP90trsoVdXRrRz1gMtSWuMSZCvqTg8N14JpDpLSUdWDbvkgxFgL1TIqjZK1FkJwCQrqRvOT4u2Bu9xvx6TcX4c1emzZV0zSStSSdqiqDioVQ0rRjP0S7Qxx6xnt7-3rD_b1aF__YF-_YdGbR_Q64L__lvzxCwX8IEiY8nsT__X-D_Y3qLGtBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180264809</pqid></control><display><type>article</type><title>Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Datta, Satabdi ; Choudhury, Diptiman ; Das, Amlan ; Mukherjee, Dipanwita Das ; Dasgupta, Moumita ; Bandopadhyay, Shreya ; Chakrabarti, Gopal</creator><creatorcontrib>Datta, Satabdi ; Choudhury, Diptiman ; Das, Amlan ; Mukherjee, Dipanwita Das ; Dasgupta, Moumita ; Bandopadhyay, Shreya ; Chakrabarti, Gopal</creatorcontrib><description>Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/β-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.</description><identifier>ISSN: 1360-8185</identifier><identifier>EISSN: 1573-675X</identifier><identifier>DOI: 10.1007/s10495-019-01526-y</identifier><identifier>PMID: 30767087</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>A549 Cells ; Adenocarcinoma ; AKT protein ; Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Autophagy - drug effects ; beta Catenin - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer Research ; Cell Biology ; Cell Cycle Checkpoints - drug effects ; Cell Line ; Cell Survival - drug effects ; Chemoresistance ; Chemotherapy ; Chloroquine ; Chloroquine - pharmacology ; Damage accumulation ; Dose-Response Relationship, Drug ; Drug Resistance, Neoplasm - drug effects ; Efflux ; G1 phase ; Humans ; Lung cancer ; Lung carcinoma ; Mesenchyme ; Metastases ; Metastasis ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Modulation ; Mutation ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - pathology ; Non-small cell lung carcinoma ; Oncology ; Paclitaxel ; Paclitaxel - pharmacology ; Phagocytosis ; Pretreatment ; Proto-Oncogene Proteins c-akt - metabolism ; Reactive Oxygen Species - metabolism ; Signal transduction ; Stem cells ; Superoxide ; Taxol ; Toxicity ; Tubulin ; Virology ; Wnt protein ; Wnt Signaling Pathway - drug effects ; β-Catenin</subject><ispartof>Apoptosis (London), 2019-06, Vol.24 (5-6), p.414-433</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Apoptosis is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290y-fdb152cdd30787649db53d61d3a800fc4bd73b66f46c7108ec84d66638aca45d3</citedby><cites>FETCH-LOGICAL-c290y-fdb152cdd30787649db53d61d3a800fc4bd73b66f46c7108ec84d66638aca45d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10495-019-01526-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10495-019-01526-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30767087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, Satabdi</creatorcontrib><creatorcontrib>Choudhury, Diptiman</creatorcontrib><creatorcontrib>Das, Amlan</creatorcontrib><creatorcontrib>Mukherjee, Dipanwita Das</creatorcontrib><creatorcontrib>Dasgupta, Moumita</creatorcontrib><creatorcontrib>Bandopadhyay, Shreya</creatorcontrib><creatorcontrib>Chakrabarti, Gopal</creatorcontrib><title>Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway</title><title>Apoptosis (London)</title><addtitle>Apoptosis</addtitle><addtitle>Apoptosis</addtitle><description>Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/β-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.</description><subject>A549 Cells</subject><subject>Adenocarcinoma</subject><subject>AKT protein</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>beta Catenin - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Chemoresistance</subject><subject>Chemotherapy</subject><subject>Chloroquine</subject><subject>Chloroquine - pharmacology</subject><subject>Damage accumulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Efflux</subject><subject>G1 phase</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung carcinoma</subject><subject>Mesenchyme</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Modulation</subject><subject>Mutation</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Non-small cell lung carcinoma</subject><subject>Oncology</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Phagocytosis</subject><subject>Pretreatment</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Superoxide</subject><subject>Taxol</subject><subject>Toxicity</subject><subject>Tubulin</subject><subject>Virology</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><subject>β-Catenin</subject><issn>1360-8185</issn><issn>1573-675X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFu1TAQhiMEoqVwARbIEutQO04cZ_lUQUGqVKmAxC6a2M6LK8cOttOSa_UYLDgT074COxaWrZl_vhnPXxSvGX3HKG1PE6N115SUdXiaSpTbk-KYNS0vRdt8e4pvLmgpmWyOihcpXVNKueT18-KI01a0VLbHxc_dmsMywX4j1k92sNkGT25tnoiaXIjh-2q9IdHcmJgTWUA5m-GHcRhKNmXwyhDwmkDOxq-QTSKzyYCZbBVZAkazBYd0Mq0zeOKDTzM4R9zq9wS08UFBVNaHGciuqTuijHOJ3FggV5efkaYtYjWZg14dPMwXRvLrrlQY9shdIE-3sL0sno3gknn1eJ8UXz-8_3L2sby4PP90trsoVdXRrRz1gMtSWuMSZCvqTg8N14JpDpLSUdWDbvkgxFgL1TIqjZK1FkJwCQrqRvOT4u2Bu9xvx6TcX4c1emzZV0zSStSSdqiqDioVQ0rRjP0S7Qxx6xnt7-3rD_b1aF__YF-_YdGbR_Q64L__lvzxCwX8IEiY8nsT__X-D_Y3qLGtBA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Datta, Satabdi</creator><creator>Choudhury, Diptiman</creator><creator>Das, Amlan</creator><creator>Mukherjee, Dipanwita Das</creator><creator>Dasgupta, Moumita</creator><creator>Bandopadhyay, Shreya</creator><creator>Chakrabarti, Gopal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RQ</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201906</creationdate><title>Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway</title><author>Datta, Satabdi ; Choudhury, Diptiman ; Das, Amlan ; Mukherjee, Dipanwita Das ; Dasgupta, Moumita ; Bandopadhyay, Shreya ; Chakrabarti, Gopal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290y-fdb152cdd30787649db53d61d3a800fc4bd73b66f46c7108ec84d66638aca45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A549 Cells</topic><topic>Adenocarcinoma</topic><topic>AKT protein</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>beta Catenin - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Chemoresistance</topic><topic>Chemotherapy</topic><topic>Chloroquine</topic><topic>Chloroquine - pharmacology</topic><topic>Damage accumulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Efflux</topic><topic>G1 phase</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung carcinoma</topic><topic>Mesenchyme</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Modulation</topic><topic>Mutation</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Non-small cell lung carcinoma</topic><topic>Oncology</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Phagocytosis</topic><topic>Pretreatment</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Superoxide</topic><topic>Taxol</topic><topic>Toxicity</topic><topic>Tubulin</topic><topic>Virology</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Satabdi</creatorcontrib><creatorcontrib>Choudhury, Diptiman</creatorcontrib><creatorcontrib>Das, Amlan</creatorcontrib><creatorcontrib>Mukherjee, Dipanwita Das</creatorcontrib><creatorcontrib>Dasgupta, Moumita</creatorcontrib><creatorcontrib>Bandopadhyay, Shreya</creatorcontrib><creatorcontrib>Chakrabarti, Gopal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Apoptosis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Satabdi</au><au>Choudhury, Diptiman</au><au>Das, Amlan</au><au>Mukherjee, Dipanwita Das</au><au>Dasgupta, Moumita</au><au>Bandopadhyay, Shreya</au><au>Chakrabarti, Gopal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway</atitle><jtitle>Apoptosis (London)</jtitle><stitle>Apoptosis</stitle><addtitle>Apoptosis</addtitle><date>2019-06</date><risdate>2019</risdate><volume>24</volume><issue>5-6</issue><spage>414</spage><epage>433</epage><pages>414-433</pages><issn>1360-8185</issn><eissn>1573-675X</eissn><abstract>Paclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc. In this study we found that inhibition of autophagy with chloroquine prevented development of paclitaxel resistance in A549 cells with time and potentiated the effect of paclitaxel by increased accumulation of superoxide-producing damaged mitochondria, with elevated ROS generation, it also increased the apoptotic rate and sub G0/ G1 phase arrest with time in A549 cells treated with paclitaxel and attenuated the metastatic potential and cancer stem cell population of the paclitaxel-resistant cells by ROS mediated modulation of the Wnt/β-catenin signaling pathway, thereby increasing paclitaxel sensitivity. ROS here played a crucial role in modulating Akt activity when autophagy process was hindered by chloroquine, excessive ROS accumulation in the cell inhibited Akt activity. In addition, chloroquine pre-treatment followed by taxol (10 nM) treatment did not show significant toxicity towards non-carcinomas WI38 cells (lung fibroblast cells). Thus autophagy inhibition by CQ pre-treatment can be used as a fruitful strategy to combat the phenomenon of paclitaxel resistance development as well as metastasis in lung cancer.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30767087</pmid><doi>10.1007/s10495-019-01526-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-8185
ispartof Apoptosis (London), 2019-06, Vol.24 (5-6), p.414-433
issn 1360-8185
1573-675X
language eng
recordid cdi_proquest_journals_2180264809
source MEDLINE; SpringerNature Journals
subjects A549 Cells
Adenocarcinoma
AKT protein
Antineoplastic Agents, Phytogenic - pharmacology
Apoptosis
Apoptosis - drug effects
Autophagy
Autophagy - drug effects
beta Catenin - metabolism
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer Research
Cell Biology
Cell Cycle Checkpoints - drug effects
Cell Line
Cell Survival - drug effects
Chemoresistance
Chemotherapy
Chloroquine
Chloroquine - pharmacology
Damage accumulation
Dose-Response Relationship, Drug
Drug Resistance, Neoplasm - drug effects
Efflux
G1 phase
Humans
Lung cancer
Lung carcinoma
Mesenchyme
Metastases
Metastasis
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Modulation
Mutation
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - pathology
Non-small cell lung carcinoma
Oncology
Paclitaxel
Paclitaxel - pharmacology
Phagocytosis
Pretreatment
Proto-Oncogene Proteins c-akt - metabolism
Reactive Oxygen Species - metabolism
Signal transduction
Stem cells
Superoxide
Taxol
Toxicity
Tubulin
Virology
Wnt protein
Wnt Signaling Pathway - drug effects
β-Catenin
title Autophagy inhibition with chloroquine reverts paclitaxel resistance and attenuates metastatic potential in human nonsmall lung adenocarcinoma A549 cells via ROS mediated modulation of β-catenin pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20inhibition%20with%20chloroquine%20reverts%20paclitaxel%20resistance%20and%20attenuates%20metastatic%20potential%20in%20human%20nonsmall%20lung%20adenocarcinoma%20A549%20cells%20via%20ROS%20mediated%20modulation%20of%20%CE%B2-catenin%20pathway&rft.jtitle=Apoptosis%20(London)&rft.au=Datta,%20Satabdi&rft.date=2019-06&rft.volume=24&rft.issue=5-6&rft.spage=414&rft.epage=433&rft.pages=414-433&rft.issn=1360-8185&rft.eissn=1573-675X&rft_id=info:doi/10.1007/s10495-019-01526-y&rft_dat=%3Cproquest_cross%3E2180264809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180264809&rft_id=info:pmid/30767087&rfr_iscdi=true