3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging
We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This appro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational imaging 2019-03, Vol.5 (1), p.97-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | IEEE transactions on computational imaging |
container_volume | 5 |
creator | Shah, Pratik Chen, Guanbo Stang, John Moghaddam, Mahta |
description | We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than \text{2}\%. |
doi_str_mv | 10.1109/TCI.2018.2879403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2180022658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8520759</ieee_id><sourcerecordid>2180022658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</originalsourceid><addsrcrecordid>eNo9kM1rwkAQxZfSQsV6L_Sy0HPs7E4-do8l_bIoQrXnZZNMNKJZu4kW__smKD3NO7w3M-_H2L2AsRCgn5bpZCxBqLFUiQ4Br9hAImLQ6-tORwkGEGJ8y0ZNswEAEWqJKh6wOQYvfEpH2vIFtXxG7doVvHSef7qqbnnq6tbbpuW2LvhibffEvyh3R_InXtV8VuXe_doj8cnOrqp6dcduSrttaHSZQ_b99rpMP4Lp_H2SPk-DXErRBiIMQYWQoU1Ci1IXupQZJqqkHFWWWxsLlErHtiDQUR53vcAKm2WZzPoUDtnjee_eu58DNa3ZuIOvu5NGCgUgZRypzgVnV_dl03gqzd5XO-tPRoDpyZmOnOnJmQu5LvJwjlRE9G9XkYQk0vgH3HVniw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180022658</pqid></control><display><type>article</type><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</creator><creatorcontrib>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</creatorcontrib><description>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than <inline-formula><tex-math notation="LaTeX">\text{2}\%</tex-math></inline-formula>.</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2018.2879403</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Born iterative method ; compressed sensing ; Computational efficiency ; Cost function ; Dielectrics ; Electromagnetic tomography ; Estimation ; gradient methods ; Image reconstruction ; inverse scattering ; Iterative methods ; Level set ; level set method ; Magnetic resonance imaging ; Microwave imaging ; Microwave theory and techniques ; Robustness (mathematics) ; Shape ; total variation</subject><ispartof>IEEE transactions on computational imaging, 2019-03, Vol.5 (1), p.97-108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</citedby><cites>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</cites><orcidid>0000-0001-5304-2616 ; 0000-0003-2037-5697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8520759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8520759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shah, Pratik</creatorcontrib><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than <inline-formula><tex-math notation="LaTeX">\text{2}\%</tex-math></inline-formula>.</description><subject>Born iterative method</subject><subject>compressed sensing</subject><subject>Computational efficiency</subject><subject>Cost function</subject><subject>Dielectrics</subject><subject>Electromagnetic tomography</subject><subject>Estimation</subject><subject>gradient methods</subject><subject>Image reconstruction</subject><subject>inverse scattering</subject><subject>Iterative methods</subject><subject>Level set</subject><subject>level set method</subject><subject>Magnetic resonance imaging</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>total variation</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rwkAQxZfSQsV6L_Sy0HPs7E4-do8l_bIoQrXnZZNMNKJZu4kW__smKD3NO7w3M-_H2L2AsRCgn5bpZCxBqLFUiQ4Br9hAImLQ6-tORwkGEGJ8y0ZNswEAEWqJKh6wOQYvfEpH2vIFtXxG7doVvHSef7qqbnnq6tbbpuW2LvhibffEvyh3R_InXtV8VuXe_doj8cnOrqp6dcduSrttaHSZQ_b99rpMP4Lp_H2SPk-DXErRBiIMQYWQoU1Ci1IXupQZJqqkHFWWWxsLlErHtiDQUR53vcAKm2WZzPoUDtnjee_eu58DNa3ZuIOvu5NGCgUgZRypzgVnV_dl03gqzd5XO-tPRoDpyZmOnOnJmQu5LvJwjlRE9G9XkYQk0vgH3HVniw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Shah, Pratik</creator><creator>Chen, Guanbo</creator><creator>Stang, John</creator><creator>Moghaddam, Mahta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5304-2616</orcidid><orcidid>https://orcid.org/0000-0003-2037-5697</orcidid></search><sort><creationdate>20190301</creationdate><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><author>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Born iterative method</topic><topic>compressed sensing</topic><topic>Computational efficiency</topic><topic>Cost function</topic><topic>Dielectrics</topic><topic>Electromagnetic tomography</topic><topic>Estimation</topic><topic>gradient methods</topic><topic>Image reconstruction</topic><topic>inverse scattering</topic><topic>Iterative methods</topic><topic>Level set</topic><topic>level set method</topic><topic>Magnetic resonance imaging</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>total variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Pratik</creatorcontrib><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Pratik</au><au>Chen, Guanbo</au><au>Stang, John</au><au>Moghaddam, Mahta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than <inline-formula><tex-math notation="LaTeX">\text{2}\%</tex-math></inline-formula>.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2018.2879403</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5304-2616</orcidid><orcidid>https://orcid.org/0000-0003-2037-5697</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2573-0436 |
ispartof | IEEE transactions on computational imaging, 2019-03, Vol.5 (1), p.97-108 |
issn | 2573-0436 2333-9403 |
language | eng |
recordid | cdi_proquest_journals_2180022658 |
source | IEEE Electronic Library (IEL) |
subjects | Born iterative method compressed sensing Computational efficiency Cost function Dielectrics Electromagnetic tomography Estimation gradient methods Image reconstruction inverse scattering Iterative methods Level set level set method Magnetic resonance imaging Microwave imaging Microwave theory and techniques Robustness (mathematics) Shape total variation |
title | 3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Level%20Set%20Method%20for%20Joint%20Contrast%20and%20Shape%20Recovery%20in%20Microwave%20Imaging&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=Shah,%20Pratik&rft.date=2019-03-01&rft.volume=5&rft.issue=1&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2018.2879403&rft_dat=%3Cproquest_RIE%3E2180022658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180022658&rft_id=info:pmid/&rft_ieee_id=8520759&rfr_iscdi=true |