3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging

We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2019-03, Vol.5 (1), p.97-108
Hauptverfasser: Shah, Pratik, Chen, Guanbo, Stang, John, Moghaddam, Mahta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 97
container_title IEEE transactions on computational imaging
container_volume 5
creator Shah, Pratik
Chen, Guanbo
Stang, John
Moghaddam, Mahta
description We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than \text{2}\%.
doi_str_mv 10.1109/TCI.2018.2879403
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2180022658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8520759</ieee_id><sourcerecordid>2180022658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</originalsourceid><addsrcrecordid>eNo9kM1rwkAQxZfSQsV6L_Sy0HPs7E4-do8l_bIoQrXnZZNMNKJZu4kW__smKD3NO7w3M-_H2L2AsRCgn5bpZCxBqLFUiQ4Br9hAImLQ6-tORwkGEGJ8y0ZNswEAEWqJKh6wOQYvfEpH2vIFtXxG7doVvHSef7qqbnnq6tbbpuW2LvhibffEvyh3R_InXtV8VuXe_doj8cnOrqp6dcduSrttaHSZQ_b99rpMP4Lp_H2SPk-DXErRBiIMQYWQoU1Ci1IXupQZJqqkHFWWWxsLlErHtiDQUR53vcAKm2WZzPoUDtnjee_eu58DNa3ZuIOvu5NGCgUgZRypzgVnV_dl03gqzd5XO-tPRoDpyZmOnOnJmQu5LvJwjlRE9G9XkYQk0vgH3HVniw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180022658</pqid></control><display><type>article</type><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</creator><creatorcontrib>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</creatorcontrib><description>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\text{2}\%&lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2018.2879403</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Born iterative method ; compressed sensing ; Computational efficiency ; Cost function ; Dielectrics ; Electromagnetic tomography ; Estimation ; gradient methods ; Image reconstruction ; inverse scattering ; Iterative methods ; Level set ; level set method ; Magnetic resonance imaging ; Microwave imaging ; Microwave theory and techniques ; Robustness (mathematics) ; Shape ; total variation</subject><ispartof>IEEE transactions on computational imaging, 2019-03, Vol.5 (1), p.97-108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</citedby><cites>FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</cites><orcidid>0000-0001-5304-2616 ; 0000-0003-2037-5697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8520759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8520759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shah, Pratik</creatorcontrib><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\text{2}\%&lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><subject>Born iterative method</subject><subject>compressed sensing</subject><subject>Computational efficiency</subject><subject>Cost function</subject><subject>Dielectrics</subject><subject>Electromagnetic tomography</subject><subject>Estimation</subject><subject>gradient methods</subject><subject>Image reconstruction</subject><subject>inverse scattering</subject><subject>Iterative methods</subject><subject>Level set</subject><subject>level set method</subject><subject>Magnetic resonance imaging</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>total variation</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rwkAQxZfSQsV6L_Sy0HPs7E4-do8l_bIoQrXnZZNMNKJZu4kW__smKD3NO7w3M-_H2L2AsRCgn5bpZCxBqLFUiQ4Br9hAImLQ6-tORwkGEGJ8y0ZNswEAEWqJKh6wOQYvfEpH2vIFtXxG7doVvHSef7qqbnnq6tbbpuW2LvhibffEvyh3R_InXtV8VuXe_doj8cnOrqp6dcduSrttaHSZQ_b99rpMP4Lp_H2SPk-DXErRBiIMQYWQoU1Ci1IXupQZJqqkHFWWWxsLlErHtiDQUR53vcAKm2WZzPoUDtnjee_eu58DNa3ZuIOvu5NGCgUgZRypzgVnV_dl03gqzd5XO-tPRoDpyZmOnOnJmQu5LvJwjlRE9G9XkYQk0vgH3HVniw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Shah, Pratik</creator><creator>Chen, Guanbo</creator><creator>Stang, John</creator><creator>Moghaddam, Mahta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5304-2616</orcidid><orcidid>https://orcid.org/0000-0003-2037-5697</orcidid></search><sort><creationdate>20190301</creationdate><title>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</title><author>Shah, Pratik ; Chen, Guanbo ; Stang, John ; Moghaddam, Mahta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-1440840b3a74a329d9f2b378fec38bcaa6132896ade095c62870a1abbb2b0b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Born iterative method</topic><topic>compressed sensing</topic><topic>Computational efficiency</topic><topic>Cost function</topic><topic>Dielectrics</topic><topic>Electromagnetic tomography</topic><topic>Estimation</topic><topic>gradient methods</topic><topic>Image reconstruction</topic><topic>inverse scattering</topic><topic>Iterative methods</topic><topic>Level set</topic><topic>level set method</topic><topic>Magnetic resonance imaging</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>total variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Pratik</creatorcontrib><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Pratik</au><au>Chen, Guanbo</au><au>Stang, John</au><au>Moghaddam, Mahta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>97</spage><epage>108</epage><pages>97-108</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>We propose a three-dimensional (3-D) fast level set method, which can estimate both object shape and dielectric contrast with reduced computational cost. In prior work, we presented a 2-D fast level set method that integrated the level set inversion within the Born iterative method (BIM). This approach significantly reduced the computational cost; however, it was limited to estimating object shape without providing any dielectric contrast inversion. In this paper, we extend our previous method to 3-D and add the capability to estimate dielectric contrast in addition to the shape. The contrast estimation is formulated as a separate step within the BIM iteration, such that the shape and contrast are estimated sequentially in each BIM iteration. This modular framework enables the freedom to choose any arbitrary constraints on the contrast in the cost function. Here, we demonstrate the applicability of a total-variation constraint for the contrast cost function. To validate the method, synthetic data are generated for objects within a 3-D imaging cavity and are then used to test for robustness against variations in object shape, size, position, and contrast. Further, the method is tested on MRI-derived numerical breast phantoms. The reconstructed images indicate that the method can produce accurate estimates of object location, shape, and size while recovering the contrast with an error lower than &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\text{2}\%&lt;/tex-math&gt;&lt;/inline-formula&gt;.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2018.2879403</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5304-2616</orcidid><orcidid>https://orcid.org/0000-0003-2037-5697</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2573-0436
ispartof IEEE transactions on computational imaging, 2019-03, Vol.5 (1), p.97-108
issn 2573-0436
2333-9403
language eng
recordid cdi_proquest_journals_2180022658
source IEEE Electronic Library (IEL)
subjects Born iterative method
compressed sensing
Computational efficiency
Cost function
Dielectrics
Electromagnetic tomography
Estimation
gradient methods
Image reconstruction
inverse scattering
Iterative methods
Level set
level set method
Magnetic resonance imaging
Microwave imaging
Microwave theory and techniques
Robustness (mathematics)
Shape
total variation
title 3-D Level Set Method for Joint Contrast and Shape Recovery in Microwave Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Level%20Set%20Method%20for%20Joint%20Contrast%20and%20Shape%20Recovery%20in%20Microwave%20Imaging&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=Shah,%20Pratik&rft.date=2019-03-01&rft.volume=5&rft.issue=1&rft.spage=97&rft.epage=108&rft.pages=97-108&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2018.2879403&rft_dat=%3Cproquest_RIE%3E2180022658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180022658&rft_id=info:pmid/&rft_ieee_id=8520759&rfr_iscdi=true