Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation
The scope of this work is to develop and optimize a reductive roasting process followed by wet magnetic separation for iron recovery from bauxite residue (BR). The aim of the roasting process is the transformation of the nonmagnetic iron phases found in BR (namely hematite and goethite), to magnetic...
Gespeichert in:
Veröffentlicht in: | Journal of sustainable metallurgy 2019-03, Vol.5 (1), p.9-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Journal of sustainable metallurgy |
container_volume | 5 |
creator | Cardenia, Chiara Balomenos, Efthymios Panias, Dimitris |
description | The scope of this work is to develop and optimize a reductive roasting process followed by wet magnetic separation for iron recovery from bauxite residue (BR). The aim of the roasting process is the transformation of the nonmagnetic iron phases found in BR (namely hematite and goethite), to magnetic ones such as magnetite, wüstite, and metallic iron. The magnetic iron phases in the roasting residue can be fractionated in a second stage through wet magnetic separation, forming a valuable iron concentrate and leaving a nonmagnetic residue containing rare earth elements among other constituents. The BR-roasting process has been modeled using a thermochemical software (FactSage 6.4) to define process temperature, Carbon/Bauxite Residue mass ratio (C/BR), retention time, and process atmosphere. Roasting process experiments with different ratios of C/BR (0.112 and 0.225) and temperatures (800 and 1100 °C), 4-h retention time, and, in the presence of N
2
atmosphere, have proven almost the total conversion of hematite to iron magnetic phases (> 99 wt%). Subsequently, the magnetic separation process has been examined by means of a wet high-intensity magnetic separator, and the analyses have shown a marginal Fe enrichment in magnetic fraction in relation to the sinter. |
doi_str_mv | 10.1007/s40831-018-0181-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2179790920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179790920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-32ec62c9810a6ce7fdf02a35ad774d64ebba9f379ea26e507b4c1ddeb021ee983</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeV_Oxu9kctfhRqAhaEU8hm8y2W-ymJtli_70pK3ryMMzMm_fewEPonJJLSoi4CjmpOM0IrQ5Fs-IIjRiVMuMJPv6dGT9FkxDWhBAmeC4EHaH3mXcdfgbjduD3uPFug290_9VGSGhobQ94sfKuX67SbnsT2126OB1i2y2x7ix-g4gf9bKD2Br8AlvtdWxdd4ZOGv0RYPLTx-j17nYxfcjmT_ez6fU8M1yWMeMMTMmMrCjRpQHR2IYwzQtthchtmUNda9lwIUGzEgoi6txQa6EmjALIio_RxeC79e6zhxDV2vW-Sy8Vo0IKSSQjiUUHlvEuBA-N2vp2o_1eUaIOIaohRJUCPBRVRdKwQRMSt1uC_3P-X_QNCXl1Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179790920</pqid></control><display><type>article</type><title>Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation</title><source>Springer Nature - Complete Springer Journals</source><creator>Cardenia, Chiara ; Balomenos, Efthymios ; Panias, Dimitris</creator><creatorcontrib>Cardenia, Chiara ; Balomenos, Efthymios ; Panias, Dimitris</creatorcontrib><description>The scope of this work is to develop and optimize a reductive roasting process followed by wet magnetic separation for iron recovery from bauxite residue (BR). The aim of the roasting process is the transformation of the nonmagnetic iron phases found in BR (namely hematite and goethite), to magnetic ones such as magnetite, wüstite, and metallic iron. The magnetic iron phases in the roasting residue can be fractionated in a second stage through wet magnetic separation, forming a valuable iron concentrate and leaving a nonmagnetic residue containing rare earth elements among other constituents. The BR-roasting process has been modeled using a thermochemical software (FactSage 6.4) to define process temperature, Carbon/Bauxite Residue mass ratio (C/BR), retention time, and process atmosphere. Roasting process experiments with different ratios of C/BR (0.112 and 0.225) and temperatures (800 and 1100 °C), 4-h retention time, and, in the presence of N
2
atmosphere, have proven almost the total conversion of hematite to iron magnetic phases (> 99 wt%). Subsequently, the magnetic separation process has been examined by means of a wet high-intensity magnetic separator, and the analyses have shown a marginal Fe enrichment in magnetic fraction in relation to the sinter.</description><identifier>ISSN: 2199-3823</identifier><identifier>EISSN: 2199-3831</identifier><identifier>DOI: 10.1007/s40831-018-0181-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bauxite ; Bayer process ; Earth and Environmental Science ; Environment ; Hematite ; Iron constituents ; Magnetic separation ; Magnetic separators ; Metallic Materials ; Phases ; Rare earth elements ; Recovery ; Research Article ; Roasting ; Separators ; Sustainable Development ; Wustite</subject><ispartof>Journal of sustainable metallurgy, 2019-03, Vol.5 (1), p.9-19</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-32ec62c9810a6ce7fdf02a35ad774d64ebba9f379ea26e507b4c1ddeb021ee983</citedby><cites>FETCH-LOGICAL-c396t-32ec62c9810a6ce7fdf02a35ad774d64ebba9f379ea26e507b4c1ddeb021ee983</cites><orcidid>0000-0002-4866-3589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40831-018-0181-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40831-018-0181-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Cardenia, Chiara</creatorcontrib><creatorcontrib>Balomenos, Efthymios</creatorcontrib><creatorcontrib>Panias, Dimitris</creatorcontrib><title>Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation</title><title>Journal of sustainable metallurgy</title><addtitle>J. Sustain. Metall</addtitle><description>The scope of this work is to develop and optimize a reductive roasting process followed by wet magnetic separation for iron recovery from bauxite residue (BR). The aim of the roasting process is the transformation of the nonmagnetic iron phases found in BR (namely hematite and goethite), to magnetic ones such as magnetite, wüstite, and metallic iron. The magnetic iron phases in the roasting residue can be fractionated in a second stage through wet magnetic separation, forming a valuable iron concentrate and leaving a nonmagnetic residue containing rare earth elements among other constituents. The BR-roasting process has been modeled using a thermochemical software (FactSage 6.4) to define process temperature, Carbon/Bauxite Residue mass ratio (C/BR), retention time, and process atmosphere. Roasting process experiments with different ratios of C/BR (0.112 and 0.225) and temperatures (800 and 1100 °C), 4-h retention time, and, in the presence of N
2
atmosphere, have proven almost the total conversion of hematite to iron magnetic phases (> 99 wt%). Subsequently, the magnetic separation process has been examined by means of a wet high-intensity magnetic separator, and the analyses have shown a marginal Fe enrichment in magnetic fraction in relation to the sinter.</description><subject>Bauxite</subject><subject>Bayer process</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Hematite</subject><subject>Iron constituents</subject><subject>Magnetic separation</subject><subject>Magnetic separators</subject><subject>Metallic Materials</subject><subject>Phases</subject><subject>Rare earth elements</subject><subject>Recovery</subject><subject>Research Article</subject><subject>Roasting</subject><subject>Separators</subject><subject>Sustainable Development</subject><subject>Wustite</subject><issn>2199-3823</issn><issn>2199-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3gKeV_Oxu9kctfhRqAhaEU8hm8y2W-ymJtli_70pK3ryMMzMm_fewEPonJJLSoi4CjmpOM0IrQ5Fs-IIjRiVMuMJPv6dGT9FkxDWhBAmeC4EHaH3mXcdfgbjduD3uPFug290_9VGSGhobQ94sfKuX67SbnsT2126OB1i2y2x7ix-g4gf9bKD2Br8AlvtdWxdd4ZOGv0RYPLTx-j17nYxfcjmT_ez6fU8M1yWMeMMTMmMrCjRpQHR2IYwzQtthchtmUNda9lwIUGzEgoi6txQa6EmjALIio_RxeC79e6zhxDV2vW-Sy8Vo0IKSSQjiUUHlvEuBA-N2vp2o_1eUaIOIaohRJUCPBRVRdKwQRMSt1uC_3P-X_QNCXl1Bw</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Cardenia, Chiara</creator><creator>Balomenos, Efthymios</creator><creator>Panias, Dimitris</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4866-3589</orcidid></search><sort><creationdate>20190315</creationdate><title>Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation</title><author>Cardenia, Chiara ; Balomenos, Efthymios ; Panias, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-32ec62c9810a6ce7fdf02a35ad774d64ebba9f379ea26e507b4c1ddeb021ee983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bauxite</topic><topic>Bayer process</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Hematite</topic><topic>Iron constituents</topic><topic>Magnetic separation</topic><topic>Magnetic separators</topic><topic>Metallic Materials</topic><topic>Phases</topic><topic>Rare earth elements</topic><topic>Recovery</topic><topic>Research Article</topic><topic>Roasting</topic><topic>Separators</topic><topic>Sustainable Development</topic><topic>Wustite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardenia, Chiara</creatorcontrib><creatorcontrib>Balomenos, Efthymios</creatorcontrib><creatorcontrib>Panias, Dimitris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of sustainable metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardenia, Chiara</au><au>Balomenos, Efthymios</au><au>Panias, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation</atitle><jtitle>Journal of sustainable metallurgy</jtitle><stitle>J. Sustain. Metall</stitle><date>2019-03-15</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>9</spage><epage>19</epage><pages>9-19</pages><issn>2199-3823</issn><eissn>2199-3831</eissn><abstract>The scope of this work is to develop and optimize a reductive roasting process followed by wet magnetic separation for iron recovery from bauxite residue (BR). The aim of the roasting process is the transformation of the nonmagnetic iron phases found in BR (namely hematite and goethite), to magnetic ones such as magnetite, wüstite, and metallic iron. The magnetic iron phases in the roasting residue can be fractionated in a second stage through wet magnetic separation, forming a valuable iron concentrate and leaving a nonmagnetic residue containing rare earth elements among other constituents. The BR-roasting process has been modeled using a thermochemical software (FactSage 6.4) to define process temperature, Carbon/Bauxite Residue mass ratio (C/BR), retention time, and process atmosphere. Roasting process experiments with different ratios of C/BR (0.112 and 0.225) and temperatures (800 and 1100 °C), 4-h retention time, and, in the presence of N
2
atmosphere, have proven almost the total conversion of hematite to iron magnetic phases (> 99 wt%). Subsequently, the magnetic separation process has been examined by means of a wet high-intensity magnetic separator, and the analyses have shown a marginal Fe enrichment in magnetic fraction in relation to the sinter.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40831-018-0181-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4866-3589</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-3823 |
ispartof | Journal of sustainable metallurgy, 2019-03, Vol.5 (1), p.9-19 |
issn | 2199-3823 2199-3831 |
language | eng |
recordid | cdi_proquest_journals_2179790920 |
source | Springer Nature - Complete Springer Journals |
subjects | Bauxite Bayer process Earth and Environmental Science Environment Hematite Iron constituents Magnetic separation Magnetic separators Metallic Materials Phases Rare earth elements Recovery Research Article Roasting Separators Sustainable Development Wustite |
title | Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20Recovery%20from%20Bauxite%20Residue%20Through%20Reductive%20Roasting%20and%20Wet%20Magnetic%20Separation&rft.jtitle=Journal%20of%20sustainable%20metallurgy&rft.au=Cardenia,%20Chiara&rft.date=2019-03-15&rft.volume=5&rft.issue=1&rft.spage=9&rft.epage=19&rft.pages=9-19&rft.issn=2199-3823&rft.eissn=2199-3831&rft_id=info:doi/10.1007/s40831-018-0181-5&rft_dat=%3Cproquest_cross%3E2179790920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179790920&rft_id=info:pmid/&rfr_iscdi=true |