Recovery of Scandium by Crystallization Techniques

Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extractio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Sustainable Metallurgy 2019, Vol.5 (1), p.48-56
Hauptverfasser: Peters, Edward Michael, Kaya, Şerif, Dittrich, Carsten, Forsberg, Kerstin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 48
container_title Journal of Sustainable Metallurgy
container_volume 5
creator Peters, Edward Michael
Kaya, Şerif
Dittrich, Carsten
Forsberg, Kerstin
description Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH 4 ) 3 ScF 6 , below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH 4 ) 3 ScF 6 under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (
doi_str_mv 10.1007/s40831-019-00210-4
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2179790662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179790662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19Gbm3QyWZb6qFAQtLoN88i0U9tJTWaU8debOqXuXN3L4TuHwyHkksE1A5A3XkDCGQWmKAAyoOKEDJApRXnQT48_8nMy8n4NgZJcSMkGBJ9Nbj-N6yJbRi95WhdVu42yLpq6zjfpZlN9p01l62hh8lVdfbTGX5CzMt14MzrcIXm9v1tMZ3T-9PA4ncxpLnjSUGQGY1PKHIGjLE1sEAqZF2kQgJcGORvzmGeJgSIBEBmMC6UEQqxAZQnnQ0L7XP9ldm2md67apq7TNq30bfU20dYt9Xuz0iggjmXgr3p-5-y-Z6PXtnV1qKiRSSVVoDBQ2FO5s947Ux5zGej9nLqfU4c59e-cWgQTP1QJcL007i_6H9cPMXR13A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179790662</pqid></control><display><type>article</type><title>Recovery of Scandium by Crystallization Techniques</title><source>Springer Nature - Complete Springer Journals</source><creator>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</creator><creatorcontrib>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</creatorcontrib><description>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH 4 ) 3 ScF 6 , below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH 4 ) 3 ScF 6 under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (&lt; 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</description><identifier>ISSN: 2199-3823</identifier><identifier>EISSN: 2199-3831</identifier><identifier>DOI: 10.1007/s40831-019-00210-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ammonium scandium hexafluoride ; Antisolvent crystallization ; Bauxite ; Bayer process ; Cooling ; Cooling crystallization ; Crystallization ; Earth and Environmental Science ; Environment ; Environmental impact ; Ethanol ; Impurities ; Impurity incorporation ; Leaching ; Liquor ; Metallic Materials ; Purity ; Recovery ; Red mud ; Research Article ; Residues ; Scandium ; Solubility ; Solvent extraction ; Strip ; Supersaturation ; Sustainable Development</subject><ispartof>Journal of Sustainable Metallurgy, 2019, Vol.5 (1), p.48-56</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</citedby><cites>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40831-019-00210-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40831-019-00210-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240667$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Edward Michael</creatorcontrib><creatorcontrib>Kaya, Şerif</creatorcontrib><creatorcontrib>Dittrich, Carsten</creatorcontrib><creatorcontrib>Forsberg, Kerstin</creatorcontrib><title>Recovery of Scandium by Crystallization Techniques</title><title>Journal of Sustainable Metallurgy</title><addtitle>J. Sustain. Metall</addtitle><description>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH 4 ) 3 ScF 6 , below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH 4 ) 3 ScF 6 under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (&lt; 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</description><subject>Ammonium scandium hexafluoride</subject><subject>Antisolvent crystallization</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Cooling</subject><subject>Cooling crystallization</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Ethanol</subject><subject>Impurities</subject><subject>Impurity incorporation</subject><subject>Leaching</subject><subject>Liquor</subject><subject>Metallic Materials</subject><subject>Purity</subject><subject>Recovery</subject><subject>Red mud</subject><subject>Research Article</subject><subject>Residues</subject><subject>Scandium</subject><subject>Solubility</subject><subject>Solvent extraction</subject><subject>Strip</subject><subject>Supersaturation</subject><subject>Sustainable Development</subject><issn>2199-3823</issn><issn>2199-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19Gbm3QyWZb6qFAQtLoN88i0U9tJTWaU8debOqXuXN3L4TuHwyHkksE1A5A3XkDCGQWmKAAyoOKEDJApRXnQT48_8nMy8n4NgZJcSMkGBJ9Nbj-N6yJbRi95WhdVu42yLpq6zjfpZlN9p01l62hh8lVdfbTGX5CzMt14MzrcIXm9v1tMZ3T-9PA4ncxpLnjSUGQGY1PKHIGjLE1sEAqZF2kQgJcGORvzmGeJgSIBEBmMC6UEQqxAZQnnQ0L7XP9ldm2md67apq7TNq30bfU20dYt9Xuz0iggjmXgr3p-5-y-Z6PXtnV1qKiRSSVVoDBQ2FO5s947Ux5zGej9nLqfU4c59e-cWgQTP1QJcL007i_6H9cPMXR13A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Peters, Edward Michael</creator><creator>Kaya, Şerif</creator><creator>Dittrich, Carsten</creator><creator>Forsberg, Kerstin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>2019</creationdate><title>Recovery of Scandium by Crystallization Techniques</title><author>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium scandium hexafluoride</topic><topic>Antisolvent crystallization</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Cooling</topic><topic>Cooling crystallization</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Ethanol</topic><topic>Impurities</topic><topic>Impurity incorporation</topic><topic>Leaching</topic><topic>Liquor</topic><topic>Metallic Materials</topic><topic>Purity</topic><topic>Recovery</topic><topic>Red mud</topic><topic>Research Article</topic><topic>Residues</topic><topic>Scandium</topic><topic>Solubility</topic><topic>Solvent extraction</topic><topic>Strip</topic><topic>Supersaturation</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Edward Michael</creatorcontrib><creatorcontrib>Kaya, Şerif</creatorcontrib><creatorcontrib>Dittrich, Carsten</creatorcontrib><creatorcontrib>Forsberg, Kerstin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of Sustainable Metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Edward Michael</au><au>Kaya, Şerif</au><au>Dittrich, Carsten</au><au>Forsberg, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Scandium by Crystallization Techniques</atitle><jtitle>Journal of Sustainable Metallurgy</jtitle><stitle>J. Sustain. Metall</stitle><date>2019</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>2199-3823</issn><eissn>2199-3831</eissn><abstract>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH 4 ) 3 ScF 6 , below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH 4 ) 3 ScF 6 under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (&lt; 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40831-019-00210-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-3823
ispartof Journal of Sustainable Metallurgy, 2019, Vol.5 (1), p.48-56
issn 2199-3823
2199-3831
language eng
recordid cdi_proquest_journals_2179790662
source Springer Nature - Complete Springer Journals
subjects Ammonium scandium hexafluoride
Antisolvent crystallization
Bauxite
Bayer process
Cooling
Cooling crystallization
Crystallization
Earth and Environmental Science
Environment
Environmental impact
Ethanol
Impurities
Impurity incorporation
Leaching
Liquor
Metallic Materials
Purity
Recovery
Red mud
Research Article
Residues
Scandium
Solubility
Solvent extraction
Strip
Supersaturation
Sustainable Development
title Recovery of Scandium by Crystallization Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Scandium%20by%20Crystallization%20Techniques&rft.jtitle=Journal%20of%20Sustainable%20Metallurgy&rft.au=Peters,%20Edward%20Michael&rft.date=2019&rft.volume=5&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=2199-3823&rft.eissn=2199-3831&rft_id=info:doi/10.1007/s40831-019-00210-4&rft_dat=%3Cproquest_swepu%3E2179790662%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179790662&rft_id=info:pmid/&rfr_iscdi=true