Recovery of Scandium by Crystallization Techniques
Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extractio...
Gespeichert in:
Veröffentlicht in: | Journal of Sustainable Metallurgy 2019, Vol.5 (1), p.48-56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | Journal of Sustainable Metallurgy |
container_volume | 5 |
creator | Peters, Edward Michael Kaya, Şerif Dittrich, Carsten Forsberg, Kerstin |
description | Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH
4
)
3
ScF
6
, below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH
4
)
3
ScF
6
under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals ( |
doi_str_mv | 10.1007/s40831-019-00210-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2179790662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179790662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKsB19Gbm3QyWZb6qFAQtLoN88i0U9tJTWaU8debOqXuXN3L4TuHwyHkksE1A5A3XkDCGQWmKAAyoOKEDJApRXnQT48_8nMy8n4NgZJcSMkGBJ9Nbj-N6yJbRi95WhdVu42yLpq6zjfpZlN9p01l62hh8lVdfbTGX5CzMt14MzrcIXm9v1tMZ3T-9PA4ncxpLnjSUGQGY1PKHIGjLE1sEAqZF2kQgJcGORvzmGeJgSIBEBmMC6UEQqxAZQnnQ0L7XP9ldm2md67apq7TNq30bfU20dYt9Xuz0iggjmXgr3p-5-y-Z6PXtnV1qKiRSSVVoDBQ2FO5s947Ux5zGej9nLqfU4c59e-cWgQTP1QJcL007i_6H9cPMXR13A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179790662</pqid></control><display><type>article</type><title>Recovery of Scandium by Crystallization Techniques</title><source>Springer Nature - Complete Springer Journals</source><creator>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</creator><creatorcontrib>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</creatorcontrib><description>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH
4
)
3
ScF
6
, below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH
4
)
3
ScF
6
under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (< 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</description><identifier>ISSN: 2199-3823</identifier><identifier>EISSN: 2199-3831</identifier><identifier>DOI: 10.1007/s40831-019-00210-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ammonium scandium hexafluoride ; Antisolvent crystallization ; Bauxite ; Bayer process ; Cooling ; Cooling crystallization ; Crystallization ; Earth and Environmental Science ; Environment ; Environmental impact ; Ethanol ; Impurities ; Impurity incorporation ; Leaching ; Liquor ; Metallic Materials ; Purity ; Recovery ; Red mud ; Research Article ; Residues ; Scandium ; Solubility ; Solvent extraction ; Strip ; Supersaturation ; Sustainable Development</subject><ispartof>Journal of Sustainable Metallurgy, 2019, Vol.5 (1), p.48-56</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</citedby><cites>FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40831-019-00210-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40831-019-00210-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240667$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Edward Michael</creatorcontrib><creatorcontrib>Kaya, Şerif</creatorcontrib><creatorcontrib>Dittrich, Carsten</creatorcontrib><creatorcontrib>Forsberg, Kerstin</creatorcontrib><title>Recovery of Scandium by Crystallization Techniques</title><title>Journal of Sustainable Metallurgy</title><addtitle>J. Sustain. Metall</addtitle><description>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH
4
)
3
ScF
6
, below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH
4
)
3
ScF
6
under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (< 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</description><subject>Ammonium scandium hexafluoride</subject><subject>Antisolvent crystallization</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Cooling</subject><subject>Cooling crystallization</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental impact</subject><subject>Ethanol</subject><subject>Impurities</subject><subject>Impurity incorporation</subject><subject>Leaching</subject><subject>Liquor</subject><subject>Metallic Materials</subject><subject>Purity</subject><subject>Recovery</subject><subject>Red mud</subject><subject>Research Article</subject><subject>Residues</subject><subject>Scandium</subject><subject>Solubility</subject><subject>Solvent extraction</subject><subject>Strip</subject><subject>Supersaturation</subject><subject>Sustainable Development</subject><issn>2199-3823</issn><issn>2199-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKsB19Gbm3QyWZb6qFAQtLoN88i0U9tJTWaU8debOqXuXN3L4TuHwyHkksE1A5A3XkDCGQWmKAAyoOKEDJApRXnQT48_8nMy8n4NgZJcSMkGBJ9Nbj-N6yJbRi95WhdVu42yLpq6zjfpZlN9p01l62hh8lVdfbTGX5CzMt14MzrcIXm9v1tMZ3T-9PA4ncxpLnjSUGQGY1PKHIGjLE1sEAqZF2kQgJcGORvzmGeJgSIBEBmMC6UEQqxAZQnnQ0L7XP9ldm2md67apq7TNq30bfU20dYt9Xuz0iggjmXgr3p-5-y-Z6PXtnV1qKiRSSVVoDBQ2FO5s947Ux5zGej9nLqfU4c59e-cWgQTP1QJcL007i_6H9cPMXR13A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Peters, Edward Michael</creator><creator>Kaya, Şerif</creator><creator>Dittrich, Carsten</creator><creator>Forsberg, Kerstin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>2019</creationdate><title>Recovery of Scandium by Crystallization Techniques</title><author>Peters, Edward Michael ; Kaya, Şerif ; Dittrich, Carsten ; Forsberg, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-21e26ef7c20327fe6e20d7cdac2003fe2315363b8e0d8004b05d994206909b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium scandium hexafluoride</topic><topic>Antisolvent crystallization</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Cooling</topic><topic>Cooling crystallization</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental impact</topic><topic>Ethanol</topic><topic>Impurities</topic><topic>Impurity incorporation</topic><topic>Leaching</topic><topic>Liquor</topic><topic>Metallic Materials</topic><topic>Purity</topic><topic>Recovery</topic><topic>Red mud</topic><topic>Research Article</topic><topic>Residues</topic><topic>Scandium</topic><topic>Solubility</topic><topic>Solvent extraction</topic><topic>Strip</topic><topic>Supersaturation</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Edward Michael</creatorcontrib><creatorcontrib>Kaya, Şerif</creatorcontrib><creatorcontrib>Dittrich, Carsten</creatorcontrib><creatorcontrib>Forsberg, Kerstin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Journal of Sustainable Metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Edward Michael</au><au>Kaya, Şerif</au><au>Dittrich, Carsten</au><au>Forsberg, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Scandium by Crystallization Techniques</atitle><jtitle>Journal of Sustainable Metallurgy</jtitle><stitle>J. Sustain. Metall</stitle><date>2019</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>2199-3823</issn><eissn>2199-3831</eissn><abstract>Bauxite residues, i.e., red mud, can be processed to recover various valuable end products, while reducing the environmental impact of the waste. Scandium is one of the valuable elements in bauxite residues. It is possible to extract and enrich scandium from red mud by leaching and solvent extraction. Scandium can then be recovered from the pregnant strip liquor by crystallization. Different crystallization techniques can be used to generate the supersaturation required for scandium to crystallize out as a salt. In the present study, the crystallization of an ammonium scandium fluoride phase by cooling and antisolvent crystallization techniques is presented. Cooling crystallization gave a low yield of ammonium scandium hexafluoride, (NH
4
)
3
ScF
6
, below 50% at the lowest temperature of 1 °C investigated. Antisolvent crystallization using ethanol gave almost complete recovery with precipitation efficiency greater than 98% for an ethanol-to-strip liquor volumetric ratio of 0.8. Solubility data of (NH
4
)
3
ScF
6
under different temperatures and in different ethanol–strip liquor mixtures is herein presented. The product obtained by antisolvent crystallization had very minute crystals (< 2 µm) due to the high supersaturation generated upon adding ethanol to the strip liquor, while it was easier to obtain larger crystals by cooling crystallization. Fe and Ti impurities were detected in the solid product, and an insight into the mechanism of impurity uptake is discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40831-019-00210-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-3823 |
ispartof | Journal of Sustainable Metallurgy, 2019, Vol.5 (1), p.48-56 |
issn | 2199-3823 2199-3831 |
language | eng |
recordid | cdi_proquest_journals_2179790662 |
source | Springer Nature - Complete Springer Journals |
subjects | Ammonium scandium hexafluoride Antisolvent crystallization Bauxite Bayer process Cooling Cooling crystallization Crystallization Earth and Environmental Science Environment Environmental impact Ethanol Impurities Impurity incorporation Leaching Liquor Metallic Materials Purity Recovery Red mud Research Article Residues Scandium Solubility Solvent extraction Strip Supersaturation Sustainable Development |
title | Recovery of Scandium by Crystallization Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Scandium%20by%20Crystallization%20Techniques&rft.jtitle=Journal%20of%20Sustainable%20Metallurgy&rft.au=Peters,%20Edward%20Michael&rft.date=2019&rft.volume=5&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=2199-3823&rft.eissn=2199-3831&rft_id=info:doi/10.1007/s40831-019-00210-4&rft_dat=%3Cproquest_swepu%3E2179790662%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179790662&rft_id=info:pmid/&rfr_iscdi=true |