Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method

Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2019-01, Vol.357, p.252-266
Hauptverfasser: Wang, Xiaoli, Meng, Qingshuai, Wang, Zhou, Gan, Jin, Yang, Ying, Qin, Xunpeng, Gao, Kai, Zhong, Hanlie, Cheng, Man, Gan, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue
container_start_page 252
container_title Surface & coatings technology
container_volume 357
creator Wang, Xiaoli
Meng, Qingshuai
Wang, Zhou
Gan, Jin
Yang, Ying
Qin, Xunpeng
Gao, Kai
Zhong, Hanlie
Cheng, Man
Gan, Xiaoyan
description Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model. •A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.
doi_str_mv 10.1016/j.surfcoat.2018.09.088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2179248499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218310612</els_id><sourcerecordid>2179248499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</originalsourceid><addsrcrecordid>eNqFkM1u3CAURlGVSp1M-goVUtZ2wMbG3rUa5adSonaRrhG-XDpYMzAFPFKWffMymWadFeLyfeeKQ8gXzmrOeH8z12mJFoLOdcP4ULOxZsPwgaz4IMeqbYW8ICvWdLIaRtl8IpcpzYwxLkexIn9_RjQOsgueBkvzFumJpgEpbHXUkDG6lB2cXkWziU-BaluGNB1CphB8dn7RO-q8Wc6YUjPonf9NJ53Q0DLS1Icj7kq8Sm6_7PRrcI95G8wV-Wj1LuHn_-ea_Lq7fd48VI8_7r9vvj1W0AqWq37sQAzCSMY63ctJ8BZAm0ZMbICWC4Gd6NBoGLDcu67Vk7TSNpbzfuqkbdfk-sw9xPBnwZTVHJboy0rVFBdNgY9jSfXnFMSQUkSrDtHtdXxRnKmTbjWrN93qpFuxURXdpfj1XMTyh6PDqBI49FDsRoSsTHDvIf4B8kaO0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179248499</pqid></control><display><type>article</type><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</creator><creatorcontrib>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</creatorcontrib><description>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model. •A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.09.088</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>CAD ; Chromium molybdenum steels ; Computer aided design ; Computer simulation ; Electromagnetic induction ; Electromagnetic-thermal model ; Finite element analysis ; Finite element co-simulation ; Finite element method ; Hardening ; Induction coils ; Induction hardening ; Materials fatigue ; Mathematical models ; Metallurgy ; Residual stress ; Residual stress distribution ; Selective surfaces ; Simulation ; Spot continual induction hardening ; Strain hardening ; Surface properties ; Thermal-mechanical-metallurgical model ; Tribology</subject><ispartof>Surface &amp; coatings technology, 2019-01, Vol.357, p.252-266</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</citedby><cites>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</cites><orcidid>0000-0001-5476-8777 ; 0000-0002-1921-0433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.09.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Meng, Qingshuai</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><creatorcontrib>Gan, Jin</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Qin, Xunpeng</creatorcontrib><creatorcontrib>Gao, Kai</creatorcontrib><creatorcontrib>Zhong, Hanlie</creatorcontrib><creatorcontrib>Cheng, Man</creatorcontrib><creatorcontrib>Gan, Xiaoyan</creatorcontrib><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><title>Surface &amp; coatings technology</title><description>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model. •A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</description><subject>CAD</subject><subject>Chromium molybdenum steels</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Electromagnetic induction</subject><subject>Electromagnetic-thermal model</subject><subject>Finite element analysis</subject><subject>Finite element co-simulation</subject><subject>Finite element method</subject><subject>Hardening</subject><subject>Induction coils</subject><subject>Induction hardening</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Metallurgy</subject><subject>Residual stress</subject><subject>Residual stress distribution</subject><subject>Selective surfaces</subject><subject>Simulation</subject><subject>Spot continual induction hardening</subject><subject>Strain hardening</subject><subject>Surface properties</subject><subject>Thermal-mechanical-metallurgical model</subject><subject>Tribology</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u3CAURlGVSp1M-goVUtZ2wMbG3rUa5adSonaRrhG-XDpYMzAFPFKWffMymWadFeLyfeeKQ8gXzmrOeH8z12mJFoLOdcP4ULOxZsPwgaz4IMeqbYW8ICvWdLIaRtl8IpcpzYwxLkexIn9_RjQOsgueBkvzFumJpgEpbHXUkDG6lB2cXkWziU-BaluGNB1CphB8dn7RO-q8Wc6YUjPonf9NJ53Q0DLS1Icj7kq8Sm6_7PRrcI95G8wV-Wj1LuHn_-ea_Lq7fd48VI8_7r9vvj1W0AqWq37sQAzCSMY63ctJ8BZAm0ZMbICWC4Gd6NBoGLDcu67Vk7TSNpbzfuqkbdfk-sw9xPBnwZTVHJboy0rVFBdNgY9jSfXnFMSQUkSrDtHtdXxRnKmTbjWrN93qpFuxURXdpfj1XMTyh6PDqBI49FDsRoSsTHDvIf4B8kaO0A</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Wang, Xiaoli</creator><creator>Meng, Qingshuai</creator><creator>Wang, Zhou</creator><creator>Gan, Jin</creator><creator>Yang, Ying</creator><creator>Qin, Xunpeng</creator><creator>Gao, Kai</creator><creator>Zhong, Hanlie</creator><creator>Cheng, Man</creator><creator>Gan, Xiaoyan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5476-8777</orcidid><orcidid>https://orcid.org/0000-0002-1921-0433</orcidid></search><sort><creationdate>20190115</creationdate><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><author>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAD</topic><topic>Chromium molybdenum steels</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Electromagnetic induction</topic><topic>Electromagnetic-thermal model</topic><topic>Finite element analysis</topic><topic>Finite element co-simulation</topic><topic>Finite element method</topic><topic>Hardening</topic><topic>Induction coils</topic><topic>Induction hardening</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Metallurgy</topic><topic>Residual stress</topic><topic>Residual stress distribution</topic><topic>Selective surfaces</topic><topic>Simulation</topic><topic>Spot continual induction hardening</topic><topic>Strain hardening</topic><topic>Surface properties</topic><topic>Thermal-mechanical-metallurgical model</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Meng, Qingshuai</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><creatorcontrib>Gan, Jin</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Qin, Xunpeng</creatorcontrib><creatorcontrib>Gao, Kai</creatorcontrib><creatorcontrib>Zhong, Hanlie</creatorcontrib><creatorcontrib>Cheng, Man</creatorcontrib><creatorcontrib>Gan, Xiaoyan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoli</au><au>Meng, Qingshuai</au><au>Wang, Zhou</au><au>Gan, Jin</au><au>Yang, Ying</au><au>Qin, Xunpeng</au><au>Gao, Kai</au><au>Zhong, Hanlie</au><au>Cheng, Man</au><au>Gan, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>357</volume><spage>252</spage><epage>266</epage><pages>252-266</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model. •A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.09.088</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5476-8777</orcidid><orcidid>https://orcid.org/0000-0002-1921-0433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2019-01, Vol.357, p.252-266
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2179248499
source Elsevier ScienceDirect Journals Complete
subjects CAD
Chromium molybdenum steels
Computer aided design
Computer simulation
Electromagnetic induction
Electromagnetic-thermal model
Finite element analysis
Finite element co-simulation
Finite element method
Hardening
Induction coils
Induction hardening
Materials fatigue
Mathematical models
Metallurgy
Residual stress
Residual stress distribution
Selective surfaces
Simulation
Spot continual induction hardening
Strain hardening
Surface properties
Thermal-mechanical-metallurgical model
Tribology
title Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20surface%20characteristic%20of%2042CrMo%20after%20spot%20continual%20induction%20hardening%20based%20on%20a%20novel%20co-simulation%20method&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Wang,%20Xiaoli&rft.date=2019-01-15&rft.volume=357&rft.spage=252&rft.epage=266&rft.pages=252-266&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.09.088&rft_dat=%3Cproquest_cross%3E2179248499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179248499&rft_id=info:pmid/&rft_els_id=S0257897218310612&rfr_iscdi=true