Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method
Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical co...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2019-01, Vol.357, p.252-266 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | Surface & coatings technology |
container_volume | 357 |
creator | Wang, Xiaoli Meng, Qingshuai Wang, Zhou Gan, Jin Yang, Ying Qin, Xunpeng Gao, Kai Zhong, Hanlie Cheng, Man Gan, Xiaoyan |
description | Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model.
•A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor. |
doi_str_mv | 10.1016/j.surfcoat.2018.09.088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2179248499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218310612</els_id><sourcerecordid>2179248499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</originalsourceid><addsrcrecordid>eNqFkM1u3CAURlGVSp1M-goVUtZ2wMbG3rUa5adSonaRrhG-XDpYMzAFPFKWffMymWadFeLyfeeKQ8gXzmrOeH8z12mJFoLOdcP4ULOxZsPwgaz4IMeqbYW8ICvWdLIaRtl8IpcpzYwxLkexIn9_RjQOsgueBkvzFumJpgEpbHXUkDG6lB2cXkWziU-BaluGNB1CphB8dn7RO-q8Wc6YUjPonf9NJ53Q0DLS1Icj7kq8Sm6_7PRrcI95G8wV-Wj1LuHn_-ea_Lq7fd48VI8_7r9vvj1W0AqWq37sQAzCSMY63ctJ8BZAm0ZMbICWC4Gd6NBoGLDcu67Vk7TSNpbzfuqkbdfk-sw9xPBnwZTVHJboy0rVFBdNgY9jSfXnFMSQUkSrDtHtdXxRnKmTbjWrN93qpFuxURXdpfj1XMTyh6PDqBI49FDsRoSsTHDvIf4B8kaO0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179248499</pqid></control><display><type>article</type><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</creator><creatorcontrib>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</creatorcontrib><description>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model.
•A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.09.088</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>CAD ; Chromium molybdenum steels ; Computer aided design ; Computer simulation ; Electromagnetic induction ; Electromagnetic-thermal model ; Finite element analysis ; Finite element co-simulation ; Finite element method ; Hardening ; Induction coils ; Induction hardening ; Materials fatigue ; Mathematical models ; Metallurgy ; Residual stress ; Residual stress distribution ; Selective surfaces ; Simulation ; Spot continual induction hardening ; Strain hardening ; Surface properties ; Thermal-mechanical-metallurgical model ; Tribology</subject><ispartof>Surface & coatings technology, 2019-01, Vol.357, p.252-266</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</citedby><cites>FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</cites><orcidid>0000-0001-5476-8777 ; 0000-0002-1921-0433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.09.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Meng, Qingshuai</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><creatorcontrib>Gan, Jin</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Qin, Xunpeng</creatorcontrib><creatorcontrib>Gao, Kai</creatorcontrib><creatorcontrib>Zhong, Hanlie</creatorcontrib><creatorcontrib>Cheng, Man</creatorcontrib><creatorcontrib>Gan, Xiaoyan</creatorcontrib><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><title>Surface & coatings technology</title><description>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model.
•A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</description><subject>CAD</subject><subject>Chromium molybdenum steels</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Electromagnetic induction</subject><subject>Electromagnetic-thermal model</subject><subject>Finite element analysis</subject><subject>Finite element co-simulation</subject><subject>Finite element method</subject><subject>Hardening</subject><subject>Induction coils</subject><subject>Induction hardening</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Metallurgy</subject><subject>Residual stress</subject><subject>Residual stress distribution</subject><subject>Selective surfaces</subject><subject>Simulation</subject><subject>Spot continual induction hardening</subject><subject>Strain hardening</subject><subject>Surface properties</subject><subject>Thermal-mechanical-metallurgical model</subject><subject>Tribology</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u3CAURlGVSp1M-goVUtZ2wMbG3rUa5adSonaRrhG-XDpYMzAFPFKWffMymWadFeLyfeeKQ8gXzmrOeH8z12mJFoLOdcP4ULOxZsPwgaz4IMeqbYW8ICvWdLIaRtl8IpcpzYwxLkexIn9_RjQOsgueBkvzFumJpgEpbHXUkDG6lB2cXkWziU-BaluGNB1CphB8dn7RO-q8Wc6YUjPonf9NJ53Q0DLS1Icj7kq8Sm6_7PRrcI95G8wV-Wj1LuHn_-ea_Lq7fd48VI8_7r9vvj1W0AqWq37sQAzCSMY63ctJ8BZAm0ZMbICWC4Gd6NBoGLDcu67Vk7TSNpbzfuqkbdfk-sw9xPBnwZTVHJboy0rVFBdNgY9jSfXnFMSQUkSrDtHtdXxRnKmTbjWrN93qpFuxURXdpfj1XMTyh6PDqBI49FDsRoSsTHDvIf4B8kaO0A</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Wang, Xiaoli</creator><creator>Meng, Qingshuai</creator><creator>Wang, Zhou</creator><creator>Gan, Jin</creator><creator>Yang, Ying</creator><creator>Qin, Xunpeng</creator><creator>Gao, Kai</creator><creator>Zhong, Hanlie</creator><creator>Cheng, Man</creator><creator>Gan, Xiaoyan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5476-8777</orcidid><orcidid>https://orcid.org/0000-0002-1921-0433</orcidid></search><sort><creationdate>20190115</creationdate><title>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</title><author>Wang, Xiaoli ; Meng, Qingshuai ; Wang, Zhou ; Gan, Jin ; Yang, Ying ; Qin, Xunpeng ; Gao, Kai ; Zhong, Hanlie ; Cheng, Man ; Gan, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-695c484d7005a67b413ccad24b08c3144e545edac8e8c3553ab7f7f2f116b57f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAD</topic><topic>Chromium molybdenum steels</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Electromagnetic induction</topic><topic>Electromagnetic-thermal model</topic><topic>Finite element analysis</topic><topic>Finite element co-simulation</topic><topic>Finite element method</topic><topic>Hardening</topic><topic>Induction coils</topic><topic>Induction hardening</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Metallurgy</topic><topic>Residual stress</topic><topic>Residual stress distribution</topic><topic>Selective surfaces</topic><topic>Simulation</topic><topic>Spot continual induction hardening</topic><topic>Strain hardening</topic><topic>Surface properties</topic><topic>Thermal-mechanical-metallurgical model</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Meng, Qingshuai</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><creatorcontrib>Gan, Jin</creatorcontrib><creatorcontrib>Yang, Ying</creatorcontrib><creatorcontrib>Qin, Xunpeng</creatorcontrib><creatorcontrib>Gao, Kai</creatorcontrib><creatorcontrib>Zhong, Hanlie</creatorcontrib><creatorcontrib>Cheng, Man</creatorcontrib><creatorcontrib>Gan, Xiaoyan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoli</au><au>Meng, Qingshuai</au><au>Wang, Zhou</au><au>Gan, Jin</au><au>Yang, Ying</au><au>Qin, Xunpeng</au><au>Gao, Kai</au><au>Zhong, Hanlie</au><au>Cheng, Man</au><au>Gan, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method</atitle><jtitle>Surface & coatings technology</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>357</volume><spage>252</spage><epage>266</epage><pages>252-266</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Spot continual induction hardening (SCIH) is one kind of selective surface treatments, which has been proven to be appropriate for improving the tribological property and the fatigue behavior of specific areas of treated components. In our work, an electromagnetic-thermal-mechanical-metallurgical coupled numerical model was developed based on a novel co-simulation of ANSYS and ABAQUS/standard via making use of these two commercial finite element softwares' respective advantages to describe the SCIH process. The simulated results agreed well with experimental data in temperature development and the distributions of hardness, phase and residual stresses. The relationship between the inductor velocity and surface characteristics was discussed and the optimization of induction coil velocity was carried out based on the validated numerical model.
•A novel numerical model was developed for SCIH process via co-simulation of two FEM softwares.•The proposed model can predict the distributions of hardness, phase and residual stresses after SCIH.•The beneficial residual stress distribution can be obtained via SCIH process with a relatively low velocity of inductor.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.09.088</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5476-8777</orcidid><orcidid>https://orcid.org/0000-0002-1921-0433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2019-01, Vol.357, p.252-266 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2179248499 |
source | Elsevier ScienceDirect Journals Complete |
subjects | CAD Chromium molybdenum steels Computer aided design Computer simulation Electromagnetic induction Electromagnetic-thermal model Finite element analysis Finite element co-simulation Finite element method Hardening Induction coils Induction hardening Materials fatigue Mathematical models Metallurgy Residual stress Residual stress distribution Selective surfaces Simulation Spot continual induction hardening Strain hardening Surface properties Thermal-mechanical-metallurgical model Tribology |
title | Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20surface%20characteristic%20of%2042CrMo%20after%20spot%20continual%20induction%20hardening%20based%20on%20a%20novel%20co-simulation%20method&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Wang,%20Xiaoli&rft.date=2019-01-15&rft.volume=357&rft.spage=252&rft.epage=266&rft.pages=252-266&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.09.088&rft_dat=%3Cproquest_cross%3E2179248499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179248499&rft_id=info:pmid/&rft_els_id=S0257897218310612&rfr_iscdi=true |