Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel

Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2019-01, Vol.12 (2), p.747-755
Hauptverfasser: Choi, Jaecheol, Kim, Jeonghun, Wagner, Pawel, Gambhir, Sanjeev, Jalili, Rouhollah, Byun, Seoungwoo, Sayyar, Sepidar, Lee, Yong Min, MacFarlane, Douglas R, Wallace, Gordon G, Officer, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 2
container_start_page 747
container_title Energy & environmental science
container_volume 12
creator Choi, Jaecheol
Kim, Jeonghun
Wagner, Pawel
Gambhir, Sanjeev
Jalili, Rouhollah
Byun, Seoungwoo
Sayyar, Sepidar
Lee, Yong Min
MacFarlane, Douglas R
Wallace, Gordon G
Officer, David L
description Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.
doi_str_mv 10.1039/c8ee03403f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2179100615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179100615</sourcerecordid><originalsourceid>FETCH-LOGICAL-g254t-c628e032ad72d24342788983e72158103d6bf7fbf6645b22b9ce2520978ed1293</originalsourceid><addsrcrecordid>eNo1jz1PwzAYhC0EEqWw8AssMYfabxJ_jKgqH1KlLjBXifM6cZXawXGG_nssAdPdcHe6h5BHzp45K_XGKERWVqy0V2TFZV0VtWTi-t8LDbfkbp5PjAlgUq_Ieecx9heK1jrj0CeKI5oUgxnw7Ewz0ojdYpILngZLtwegKWShy-x8TxuahohYdO6Mfs6hXJhCnIZLdH7Tx2Ya0CMdLl0MPY735MY244wPf7omX6-7z-17sT-8fWxf9kUPdZUKI0BlDGg6CR1UZQVSKa1KlMBrlUE70VppWytEVbcArTYINTAtFXYcdLkmT7-7UwzfC87peApLzOfmI3CpecbndfkDBtNaXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179100615</pqid></control><display><type>article</type><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</creator><creatorcontrib>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</creatorcontrib><description>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee03403f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Carbon dioxide ; Carbon monoxide ; Catalysis ; Catalytic activity ; Chemical reduction ; Coordination compounds ; Durability ; Electrocatalysts ; Electrochemistry ; Electrolysis ; Energy conversion efficiency ; Energy efficiency ; Graphene ; Hydrogels ; Iron ; Organic chemistry ; State of the art</subject><ispartof>Energy &amp; environmental science, 2019-01, Vol.12 (2), p.747-755</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Choi, Jaecheol</creatorcontrib><creatorcontrib>Kim, Jeonghun</creatorcontrib><creatorcontrib>Wagner, Pawel</creatorcontrib><creatorcontrib>Gambhir, Sanjeev</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Byun, Seoungwoo</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Lee, Yong Min</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Officer, David L</creatorcontrib><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><title>Energy &amp; environmental science</title><description>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</description><subject>Aqueous solutions</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Coordination compounds</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>State of the art</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1jz1PwzAYhC0EEqWw8AssMYfabxJ_jKgqH1KlLjBXifM6cZXawXGG_nssAdPdcHe6h5BHzp45K_XGKERWVqy0V2TFZV0VtWTi-t8LDbfkbp5PjAlgUq_Ieecx9heK1jrj0CeKI5oUgxnw7Ewz0ojdYpILngZLtwegKWShy-x8TxuahohYdO6Mfs6hXJhCnIZLdH7Tx2Ya0CMdLl0MPY735MY244wPf7omX6-7z-17sT-8fWxf9kUPdZUKI0BlDGg6CR1UZQVSKa1KlMBrlUE70VppWytEVbcArTYINTAtFXYcdLkmT7-7UwzfC87peApLzOfmI3CpecbndfkDBtNaXw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Choi, Jaecheol</creator><creator>Kim, Jeonghun</creator><creator>Wagner, Pawel</creator><creator>Gambhir, Sanjeev</creator><creator>Jalili, Rouhollah</creator><creator>Byun, Seoungwoo</creator><creator>Sayyar, Sepidar</creator><creator>Lee, Yong Min</creator><creator>MacFarlane, Douglas R</creator><creator>Wallace, Gordon G</creator><creator>Officer, David L</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><author>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g254t-c628e032ad72d24342788983e72158103d6bf7fbf6645b22b9ce2520978ed1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Coordination compounds</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jaecheol</creatorcontrib><creatorcontrib>Kim, Jeonghun</creatorcontrib><creatorcontrib>Wagner, Pawel</creatorcontrib><creatorcontrib>Gambhir, Sanjeev</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Byun, Seoungwoo</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Lee, Yong Min</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Officer, David L</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jaecheol</au><au>Kim, Jeonghun</au><au>Wagner, Pawel</au><au>Gambhir, Sanjeev</au><au>Jalili, Rouhollah</au><au>Byun, Seoungwoo</au><au>Sayyar, Sepidar</au><au>Lee, Yong Min</au><au>MacFarlane, Douglas R</au><au>Wallace, Gordon G</au><au>Officer, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>747</spage><epage>755</epage><pages>747-755</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee03403f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-01, Vol.12 (2), p.747-755
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2179100615
source Royal Society Of Chemistry Journals 2008-
subjects Aqueous solutions
Carbon dioxide
Carbon monoxide
Catalysis
Catalytic activity
Chemical reduction
Coordination compounds
Durability
Electrocatalysts
Electrochemistry
Electrolysis
Energy conversion efficiency
Energy efficiency
Graphene
Hydrogels
Iron
Organic chemistry
State of the art
title Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20efficient%20electrochemical%20reduction%20of%20CO2%20to%20CO%20using%20a%20three-dimensional%20porphyrin/graphene%20hydrogel&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Choi,%20Jaecheol&rft.date=2019-01-01&rft.volume=12&rft.issue=2&rft.spage=747&rft.epage=755&rft.pages=747-755&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee03403f&rft_dat=%3Cproquest%3E2179100615%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179100615&rft_id=info:pmid/&rfr_iscdi=true