Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel
Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a t...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2019-01, Vol.12 (2), p.747-755 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | 2 |
container_start_page | 747 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Choi, Jaecheol Kim, Jeonghun Wagner, Pawel Gambhir, Sanjeev Jalili, Rouhollah Byun, Seoungwoo Sayyar, Sepidar Lee, Yong Min MacFarlane, Douglas R Wallace, Gordon G Officer, David L |
description | Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts. |
doi_str_mv | 10.1039/c8ee03403f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2179100615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179100615</sourcerecordid><originalsourceid>FETCH-LOGICAL-g254t-c628e032ad72d24342788983e72158103d6bf7fbf6645b22b9ce2520978ed1293</originalsourceid><addsrcrecordid>eNo1jz1PwzAYhC0EEqWw8AssMYfabxJ_jKgqH1KlLjBXifM6cZXawXGG_nssAdPdcHe6h5BHzp45K_XGKERWVqy0V2TFZV0VtWTi-t8LDbfkbp5PjAlgUq_Ieecx9heK1jrj0CeKI5oUgxnw7Ewz0ojdYpILngZLtwegKWShy-x8TxuahohYdO6Mfs6hXJhCnIZLdH7Tx2Ya0CMdLl0MPY735MY244wPf7omX6-7z-17sT-8fWxf9kUPdZUKI0BlDGg6CR1UZQVSKa1KlMBrlUE70VppWytEVbcArTYINTAtFXYcdLkmT7-7UwzfC87peApLzOfmI3CpecbndfkDBtNaXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179100615</pqid></control><display><type>article</type><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</creator><creatorcontrib>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</creatorcontrib><description>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee03403f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Carbon dioxide ; Carbon monoxide ; Catalysis ; Catalytic activity ; Chemical reduction ; Coordination compounds ; Durability ; Electrocatalysts ; Electrochemistry ; Electrolysis ; Energy conversion efficiency ; Energy efficiency ; Graphene ; Hydrogels ; Iron ; Organic chemistry ; State of the art</subject><ispartof>Energy & environmental science, 2019-01, Vol.12 (2), p.747-755</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Choi, Jaecheol</creatorcontrib><creatorcontrib>Kim, Jeonghun</creatorcontrib><creatorcontrib>Wagner, Pawel</creatorcontrib><creatorcontrib>Gambhir, Sanjeev</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Byun, Seoungwoo</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Lee, Yong Min</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Officer, David L</creatorcontrib><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><title>Energy & environmental science</title><description>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</description><subject>Aqueous solutions</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Coordination compounds</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>State of the art</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1jz1PwzAYhC0EEqWw8AssMYfabxJ_jKgqH1KlLjBXifM6cZXawXGG_nssAdPdcHe6h5BHzp45K_XGKERWVqy0V2TFZV0VtWTi-t8LDbfkbp5PjAlgUq_Ieecx9heK1jrj0CeKI5oUgxnw7Ewz0ojdYpILngZLtwegKWShy-x8TxuahohYdO6Mfs6hXJhCnIZLdH7Tx2Ya0CMdLl0MPY735MY244wPf7omX6-7z-17sT-8fWxf9kUPdZUKI0BlDGg6CR1UZQVSKa1KlMBrlUE70VppWytEVbcArTYINTAtFXYcdLkmT7-7UwzfC87peApLzOfmI3CpecbndfkDBtNaXw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Choi, Jaecheol</creator><creator>Kim, Jeonghun</creator><creator>Wagner, Pawel</creator><creator>Gambhir, Sanjeev</creator><creator>Jalili, Rouhollah</creator><creator>Byun, Seoungwoo</creator><creator>Sayyar, Sepidar</creator><creator>Lee, Yong Min</creator><creator>MacFarlane, Douglas R</creator><creator>Wallace, Gordon G</creator><creator>Officer, David L</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190101</creationdate><title>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</title><author>Choi, Jaecheol ; Kim, Jeonghun ; Wagner, Pawel ; Gambhir, Sanjeev ; Jalili, Rouhollah ; Byun, Seoungwoo ; Sayyar, Sepidar ; Lee, Yong Min ; MacFarlane, Douglas R ; Wallace, Gordon G ; Officer, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g254t-c628e032ad72d24342788983e72158103d6bf7fbf6645b22b9ce2520978ed1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Coordination compounds</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jaecheol</creatorcontrib><creatorcontrib>Kim, Jeonghun</creatorcontrib><creatorcontrib>Wagner, Pawel</creatorcontrib><creatorcontrib>Gambhir, Sanjeev</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Byun, Seoungwoo</creatorcontrib><creatorcontrib>Sayyar, Sepidar</creatorcontrib><creatorcontrib>Lee, Yong Min</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Wallace, Gordon G</creatorcontrib><creatorcontrib>Officer, David L</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jaecheol</au><au>Kim, Jeonghun</au><au>Wagner, Pawel</au><au>Gambhir, Sanjeev</au><au>Jalili, Rouhollah</au><au>Byun, Seoungwoo</au><au>Sayyar, Sepidar</au><au>Lee, Yong Min</au><au>MacFarlane, Douglas R</au><au>Wallace, Gordon G</au><au>Officer, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel</atitle><jtitle>Energy & environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>747</spage><epage>755</epage><pages>747-755</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Although electrochemical CO2 reduction is one of the most promising ways to convert atmospheric CO2 into value-added chemicals, there are still numerous limitations to overcome to achieve highly efficient CO2 conversion performance. Herein, we report for the first time the development and use of a three-dimensional iron porphyrin-based graphene hydrogel (FePGH) as an electrocatalyst for extremely efficient robust CO2 reduction to CO. Electrocatalytic CO2 conversion was performed in aqueous medium with FePGH, which has a highly porous and conductive 3D graphene structure, resulting in high catalytic activity for CO production with ∼96.2% faradaic efficiency at a very low overpotential of 280 mV. Furthermore, FePGH showed considerable catalytic durability maintaining a consistent CO yield (96.4% FE) over 20 h electrolysis at the same overpotential, corresponding to the highest cathodic energy efficiency yet observed of 79.7% compared to other state-of-the-art immobilised metal complex electrocatalysts. This approach to fabricating a 3D graphene-based hydrogel electrocatalyst should provide an exciting new avenue for the development of other kinds of molecular electrocatalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee03403f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-01, Vol.12 (2), p.747-755 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2179100615 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aqueous solutions Carbon dioxide Carbon monoxide Catalysis Catalytic activity Chemical reduction Coordination compounds Durability Electrocatalysts Electrochemistry Electrolysis Energy conversion efficiency Energy efficiency Graphene Hydrogels Iron Organic chemistry State of the art |
title | Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20efficient%20electrochemical%20reduction%20of%20CO2%20to%20CO%20using%20a%20three-dimensional%20porphyrin/graphene%20hydrogel&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Choi,%20Jaecheol&rft.date=2019-01-01&rft.volume=12&rft.issue=2&rft.spage=747&rft.epage=755&rft.pages=747-755&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee03403f&rft_dat=%3Cproquest%3E2179100615%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179100615&rft_id=info:pmid/&rfr_iscdi=true |