Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks

The further development of a vapor-sensing device utilizing an array of broadly distributed optical sensors is detailed. Data from these optical sensors provided input to pattern-recognizing neural networks, which successfully identified and quantified a collection of 20 analyte vapors. The optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1997-11, Vol.69 (22), p.4641-4648
Hauptverfasser: Johnson, Stephen R, Sutter, Jon M, Engelhardt, Heidi L, Jurs, Peter C, White, Joel, Kauer, John S, Dickinson, Todd A, Walt, David R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4648
container_issue 22
container_start_page 4641
container_title Analytical chemistry (Washington)
container_volume 69
creator Johnson, Stephen R
Sutter, Jon M
Engelhardt, Heidi L
Jurs, Peter C
White, Joel
Kauer, John S
Dickinson, Todd A
Walt, David R
description The further development of a vapor-sensing device utilizing an array of broadly distributed optical sensors is detailed. Data from these optical sensors provided input to pattern-recognizing neural networks, which successfully identified and quantified a collection of 20 analyte vapors. The optical sensor array consisted of 19 optical fibers whose tips were coated with Nile Red immobilized in various polymer matrices. Responses consisted of the changes in fluorescence with time resulting from the presentation of a vapor to the sensor array. Numerical descriptors calculated from these responses were then used to highlight important temporal and spatial features. Learning vector quantization neural network models were constructed using subsets of these descriptors, and they accurately identified and quantified each of the presented analytes. Successful classification was achieved for both the training set data (89%) and for the external prediction set data (90%). Relative concentrations were correctly assigned for 90% of the prediction set data.
doi_str_mv 10.1021/ac970298k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_217879153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23289231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-e603c32e613b261a7e64320edb145d21b20bef87b915bdf95ccb8470bdbaf1c03</originalsourceid><addsrcrecordid>eNpl0E1vGyEQBmAUtVLdJIf-A1S1hxy2GcC77B4tt2ks5TtxrgjYWQt7yzqAlfjfl8aRe8gJCZ55mRlCvjD4wYCzU20bCbypVwdkxEoORVXX_AMZAYAouAT4RD7HuARgDFg1Im7Wok-uc1YnN3g6dPRy0ye37pFOvO63CSOdR-cXVHt6vU4Z9vQefRwCnYSgt_m-pTc6JQye3qEdFt69Rl3hJmR7hel5CKt4RD52uo94_HYekvnZr4fpeXFx_Xs2nVwUWpQsFViBsIJjxYThFdMSq7HggK1h47LlzHAw2NXSNKw0bdeU1pp6LMG0RnfMgjgkX3e56zA8bTAmtRw2IY8SFWeylrlOZHSyQzYMMQbs1Dq4PzpsFQP1b5Fqv8hsv70F6piH74L21sV9AYexbEqeWbFjLiZ82T_rsFKVFLJUDzf36uftY8On50JV2X_feW3j_xbff_8XY4aOLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217879153</pqid></control><display><type>article</type><title>Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks</title><source>ACS Publications</source><creator>Johnson, Stephen R ; Sutter, Jon M ; Engelhardt, Heidi L ; Jurs, Peter C ; White, Joel ; Kauer, John S ; Dickinson, Todd A ; Walt, David R</creator><creatorcontrib>Johnson, Stephen R ; Sutter, Jon M ; Engelhardt, Heidi L ; Jurs, Peter C ; White, Joel ; Kauer, John S ; Dickinson, Todd A ; Walt, David R</creatorcontrib><description>The further development of a vapor-sensing device utilizing an array of broadly distributed optical sensors is detailed. Data from these optical sensors provided input to pattern-recognizing neural networks, which successfully identified and quantified a collection of 20 analyte vapors. The optical sensor array consisted of 19 optical fibers whose tips were coated with Nile Red immobilized in various polymer matrices. Responses consisted of the changes in fluorescence with time resulting from the presentation of a vapor to the sensor array. Numerical descriptors calculated from these responses were then used to highlight important temporal and spatial features. Learning vector quantization neural network models were constructed using subsets of these descriptors, and they accurately identified and quantified each of the presented analytes. Successful classification was achieved for both the training set data (89%) and for the external prediction set data (90%). Relative concentrations were correctly assigned for 90% of the prediction set data.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac970298k</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Exact sciences and technology ; General, instrumentation ; Neural networks ; Optics ; Sensors</subject><ispartof>Analytical chemistry (Washington), 1997-11, Vol.69 (22), p.4641-4648</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 15, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-e603c32e613b261a7e64320edb145d21b20bef87b915bdf95ccb8470bdbaf1c03</citedby><cites>FETCH-LOGICAL-a351t-e603c32e613b261a7e64320edb145d21b20bef87b915bdf95ccb8470bdbaf1c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac970298k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac970298k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2047952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Stephen R</creatorcontrib><creatorcontrib>Sutter, Jon M</creatorcontrib><creatorcontrib>Engelhardt, Heidi L</creatorcontrib><creatorcontrib>Jurs, Peter C</creatorcontrib><creatorcontrib>White, Joel</creatorcontrib><creatorcontrib>Kauer, John S</creatorcontrib><creatorcontrib>Dickinson, Todd A</creatorcontrib><creatorcontrib>Walt, David R</creatorcontrib><title>Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The further development of a vapor-sensing device utilizing an array of broadly distributed optical sensors is detailed. Data from these optical sensors provided input to pattern-recognizing neural networks, which successfully identified and quantified a collection of 20 analyte vapors. The optical sensor array consisted of 19 optical fibers whose tips were coated with Nile Red immobilized in various polymer matrices. Responses consisted of the changes in fluorescence with time resulting from the presentation of a vapor to the sensor array. Numerical descriptors calculated from these responses were then used to highlight important temporal and spatial features. Learning vector quantization neural network models were constructed using subsets of these descriptors, and they accurately identified and quantified each of the presented analytes. Successful classification was achieved for both the training set data (89%) and for the external prediction set data (90%). Relative concentrations were correctly assigned for 90% of the prediction set data.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Neural networks</subject><subject>Optics</subject><subject>Sensors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpl0E1vGyEQBmAUtVLdJIf-A1S1hxy2GcC77B4tt2ks5TtxrgjYWQt7yzqAlfjfl8aRe8gJCZ55mRlCvjD4wYCzU20bCbypVwdkxEoORVXX_AMZAYAouAT4RD7HuARgDFg1Im7Wok-uc1YnN3g6dPRy0ye37pFOvO63CSOdR-cXVHt6vU4Z9vQefRwCnYSgt_m-pTc6JQye3qEdFt69Rl3hJmR7hel5CKt4RD52uo94_HYekvnZr4fpeXFx_Xs2nVwUWpQsFViBsIJjxYThFdMSq7HggK1h47LlzHAw2NXSNKw0bdeU1pp6LMG0RnfMgjgkX3e56zA8bTAmtRw2IY8SFWeylrlOZHSyQzYMMQbs1Dq4PzpsFQP1b5Fqv8hsv70F6piH74L21sV9AYexbEqeWbFjLiZ82T_rsFKVFLJUDzf36uftY8On50JV2X_feW3j_xbff_8XY4aOLQ</recordid><startdate>19971115</startdate><enddate>19971115</enddate><creator>Johnson, Stephen R</creator><creator>Sutter, Jon M</creator><creator>Engelhardt, Heidi L</creator><creator>Jurs, Peter C</creator><creator>White, Joel</creator><creator>Kauer, John S</creator><creator>Dickinson, Todd A</creator><creator>Walt, David R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>19971115</creationdate><title>Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks</title><author>Johnson, Stephen R ; Sutter, Jon M ; Engelhardt, Heidi L ; Jurs, Peter C ; White, Joel ; Kauer, John S ; Dickinson, Todd A ; Walt, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-e603c32e613b261a7e64320edb145d21b20bef87b915bdf95ccb8470bdbaf1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Neural networks</topic><topic>Optics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Stephen R</creatorcontrib><creatorcontrib>Sutter, Jon M</creatorcontrib><creatorcontrib>Engelhardt, Heidi L</creatorcontrib><creatorcontrib>Jurs, Peter C</creatorcontrib><creatorcontrib>White, Joel</creatorcontrib><creatorcontrib>Kauer, John S</creatorcontrib><creatorcontrib>Dickinson, Todd A</creatorcontrib><creatorcontrib>Walt, David R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Stephen R</au><au>Sutter, Jon M</au><au>Engelhardt, Heidi L</au><au>Jurs, Peter C</au><au>White, Joel</au><au>Kauer, John S</au><au>Dickinson, Todd A</au><au>Walt, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1997-11-15</date><risdate>1997</risdate><volume>69</volume><issue>22</issue><spage>4641</spage><epage>4648</epage><pages>4641-4648</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The further development of a vapor-sensing device utilizing an array of broadly distributed optical sensors is detailed. Data from these optical sensors provided input to pattern-recognizing neural networks, which successfully identified and quantified a collection of 20 analyte vapors. The optical sensor array consisted of 19 optical fibers whose tips were coated with Nile Red immobilized in various polymer matrices. Responses consisted of the changes in fluorescence with time resulting from the presentation of a vapor to the sensor array. Numerical descriptors calculated from these responses were then used to highlight important temporal and spatial features. Learning vector quantization neural network models were constructed using subsets of these descriptors, and they accurately identified and quantified each of the presented analytes. Successful classification was achieved for both the training set data (89%) and for the external prediction set data (90%). Relative concentrations were correctly assigned for 90% of the prediction set data.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ac970298k</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1997-11, Vol.69 (22), p.4641-4648
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_217879153
source ACS Publications
subjects Analytical chemistry
Chemistry
Exact sciences and technology
General, instrumentation
Neural networks
Optics
Sensors
title Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Multiple%20Analytes%20Using%20an%20Optical%20Sensor%20Array%20and%20Pattern%20Recognition%20Neural%20Networks&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Johnson,%20Stephen%20R&rft.date=1997-11-15&rft.volume=69&rft.issue=22&rft.spage=4641&rft.epage=4648&rft.pages=4641-4648&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac970298k&rft_dat=%3Cproquest_cross%3E23289231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217879153&rft_id=info:pmid/&rfr_iscdi=true