Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity

Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equiva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2019-01, Vol.174 (2), p.404-432
Hauptverfasser: Vroylandt, Hadrien, Verley, Gatien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 2
container_start_page 404
container_title Journal of statistical physics
container_volume 174
creator Vroylandt, Hadrien
Verley, Gatien
description Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.
doi_str_mv 10.1007/s10955-018-2186-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2178685149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573767901</galeid><sourcerecordid>A573767901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ad2c8969a2ea1bf566511eb69a2ccf015856ad94d9ea3802dba3974a5bb351423</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicXbxOnFsH0spP1IFFzhbjuNEqRK7tVOkvj0uQeKE9rDSar7dnUHoFsgCCOH3EYhkDBMQmIIoMT9DM2CcYllCfo5mhFCKCw7sEl3FuCWESCHZDD28eYft_tB96d46YzPfZI9Hp4fO6D5bu2iHqrcx067O1oMNrXVj9sOE1ted6cbjNbpodB_tzW-fo8-n9cfqBW_en19Xyw02OWMj1jU1QpZSU6uhalhZMgBbnQbGNASYYKWuZVFLq3NBaF3pXPJCs6rKGRQ0n6O7ae8u-P3BxlFt_SG4dFJR4KIUSSWTajGp2mRIda7xY9AmVW2TJ-9s06X5kvGcl1wSSABMgAk-xmAbtQvdoMNRAVGnbNWUrUrZqlO2iieGTkxMWtfa8PfK_9A3Xyd7FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178685149</pqid></control><display><type>article</type><title>Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity</title><source>Springer Nature - Complete Springer Journals</source><creator>Vroylandt, Hadrien ; Verley, Gatien</creator><creatorcontrib>Vroylandt, Hadrien ; Verley, Gatien</creatorcontrib><description>Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2186-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic methods ; Equivalence ; Ergodic processes ; Ising model ; Magnetization ; Markov processes ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Stochastic processes ; Theoretical ; Variation</subject><ispartof>Journal of statistical physics, 2019-01, Vol.174 (2), p.404-432</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ad2c8969a2ea1bf566511eb69a2ccf015856ad94d9ea3802dba3974a5bb351423</citedby><cites>FETCH-LOGICAL-c355t-ad2c8969a2ea1bf566511eb69a2ccf015856ad94d9ea3802dba3974a5bb351423</cites><orcidid>0000-0001-8214-1322 ; 0000-0002-2443-5901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-018-2186-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-018-2186-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vroylandt, Hadrien</creatorcontrib><creatorcontrib>Verley, Gatien</creatorcontrib><title>Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.</description><subject>Asymptotic methods</subject><subject>Equivalence</subject><subject>Ergodic processes</subject><subject>Ising model</subject><subject>Magnetization</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Stochastic processes</subject><subject>Theoretical</subject><subject>Variation</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwicXbxOnFsH0spP1IFFzhbjuNEqRK7tVOkvj0uQeKE9rDSar7dnUHoFsgCCOH3EYhkDBMQmIIoMT9DM2CcYllCfo5mhFCKCw7sEl3FuCWESCHZDD28eYft_tB96d46YzPfZI9Hp4fO6D5bu2iHqrcx067O1oMNrXVj9sOE1ted6cbjNbpodB_tzW-fo8-n9cfqBW_en19Xyw02OWMj1jU1QpZSU6uhalhZMgBbnQbGNASYYKWuZVFLq3NBaF3pXPJCs6rKGRQ0n6O7ae8u-P3BxlFt_SG4dFJR4KIUSSWTajGp2mRIda7xY9AmVW2TJ-9s06X5kvGcl1wSSABMgAk-xmAbtQvdoMNRAVGnbNWUrUrZqlO2iieGTkxMWtfa8PfK_9A3Xyd7FA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Vroylandt, Hadrien</creator><creator>Verley, Gatien</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8214-1322</orcidid><orcidid>https://orcid.org/0000-0002-2443-5901</orcidid></search><sort><creationdate>20190101</creationdate><title>Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity</title><author>Vroylandt, Hadrien ; Verley, Gatien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ad2c8969a2ea1bf566511eb69a2ccf015856ad94d9ea3802dba3974a5bb351423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Equivalence</topic><topic>Ergodic processes</topic><topic>Ising model</topic><topic>Magnetization</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Stochastic processes</topic><topic>Theoretical</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vroylandt, Hadrien</creatorcontrib><creatorcontrib>Verley, Gatien</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vroylandt, Hadrien</au><au>Verley, Gatien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>174</volume><issue>2</issue><spage>404</spage><epage>432</epage><pages>404-432</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2186-7</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-8214-1322</orcidid><orcidid>https://orcid.org/0000-0002-2443-5901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2019-01, Vol.174 (2), p.404-432
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2178685149
source Springer Nature - Complete Springer Journals
subjects Asymptotic methods
Equivalence
Ergodic processes
Ising model
Magnetization
Markov processes
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Stochastic processes
Theoretical
Variation
title Non-equivalence of Dynamical Ensembles and Emergent Non-ergodicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equivalence%20of%20Dynamical%20Ensembles%20and%20Emergent%20Non-ergodicity&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Vroylandt,%20Hadrien&rft.date=2019-01-01&rft.volume=174&rft.issue=2&rft.spage=404&rft.epage=432&rft.pages=404-432&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2186-7&rft_dat=%3Cgale_proqu%3EA573767901%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178685149&rft_id=info:pmid/&rft_galeid=A573767901&rfr_iscdi=true