Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering

A novel method of analyzing spectroscopic imaging data is presented. A fuzzy C-means clustering algorithm has been applied to the analysis of near-infrared spectroscopic imaging data acquired with the combination of a CCD camera and a liquid crystal tunable filter. The use of fuzzy C-means clusterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1997-08, Vol.69 (16), p.3370-3374
Hauptverfasser: Mansfield, James R, Sowa, Michael G, Scarth, Gordon B, Somorjai, Rajmund L, Mantsch, Henry H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3374
container_issue 16
container_start_page 3370
container_title Analytical chemistry (Washington)
container_volume 69
creator Mansfield, James R
Sowa, Michael G
Scarth, Gordon B
Somorjai, Rajmund L
Mantsch, Henry H
description A novel method of analyzing spectroscopic imaging data is presented. A fuzzy C-means clustering algorithm has been applied to the analysis of near-infrared spectroscopic imaging data acquired with the combination of a CCD camera and a liquid crystal tunable filter. The use of fuzzy C-means clustering dramatically increased the information obtained from near-IR spectroscopic images and allowed for the detection of small subregions of the image that contained novel and unanticipated spectral features, without the need for a priori knowledge of the chemical composition of the sample. Two illustrative samples were analyzed, one comprised of four different inks printed on label paper and the other containing indocyanine green and human blood patches. The regions containing the different constituents were clearly demarcated and their mean spectra determined. The mean spectra of the second sample were shown to match those obtained using a scanning near-IR spectrometer. In addition to probing the spatial and spectral characteristics of the samples, the fuzzy C-means clustering analysis also helped improve the signal-to-noise ratio of the spectra.
doi_str_mv 10.1021/ac970206r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_217866929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13678331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-6018dc5ff296f2be6fe70bf49bfaa9cca31f9ce99a1f8ba924a38eee91770d6f3</originalsourceid><addsrcrecordid>eNplkEFPAjEQhRujiYge_AcbowcPq9Mu226PuIqQQDQBo7dmtrRkEVhsdxPh11sDwYOnOcw3b957hFxSuKPA6D1qKYABd0ekRVMGMc8ydkxaAJDETACckjPv5wCUAuUt8tBd4WLjSx9VNhqvja5d5XW1LnU0WOKsXM2iR6wxKjZRr9luN1EejwyufJQvGl8bF4BzcmJx4c3FfrbJW-9pkvfj4cvzIO8OY0xSWsccaDbVqbVMcssKw60RUNiOLCyi1BoTaqU2UiK1WYGSdTDJjDGSCgFTbpM2udrprl311Rhfq3nVuGDfK0ZFxrlkMkC3O0iHHN4Zq9auXKLbKArqtyF1aCiw13tB9BoX1uFKl_5wwIRMGYWAxTusDIG_D2t0n4qLRKRq8jpW41H__YFnPfUR-Jsdj9r_Wfz__geITYBb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217866929</pqid></control><display><type>article</type><title>Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering</title><source>American Chemical Society Journals</source><creator>Mansfield, James R ; Sowa, Michael G ; Scarth, Gordon B ; Somorjai, Rajmund L ; Mantsch, Henry H</creator><creatorcontrib>Mansfield, James R ; Sowa, Michael G ; Scarth, Gordon B ; Somorjai, Rajmund L ; Mantsch, Henry H</creatorcontrib><description>A novel method of analyzing spectroscopic imaging data is presented. A fuzzy C-means clustering algorithm has been applied to the analysis of near-infrared spectroscopic imaging data acquired with the combination of a CCD camera and a liquid crystal tunable filter. The use of fuzzy C-means clustering dramatically increased the information obtained from near-IR spectroscopic images and allowed for the detection of small subregions of the image that contained novel and unanticipated spectral features, without the need for a priori knowledge of the chemical composition of the sample. Two illustrative samples were analyzed, one comprised of four different inks printed on label paper and the other containing indocyanine green and human blood patches. The regions containing the different constituents were clearly demarcated and their mean spectra determined. The mean spectra of the second sample were shown to match those obtained using a scanning near-IR spectrometer. In addition to probing the spatial and spectral characteristics of the samples, the fuzzy C-means clustering analysis also helped improve the signal-to-noise ratio of the spectra.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac970206r</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemistry ; Exact sciences and technology ; Scientific imaging ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 1997-08, Vol.69 (16), p.3370-3374</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 15, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-6018dc5ff296f2be6fe70bf49bfaa9cca31f9ce99a1f8ba924a38eee91770d6f3</citedby><cites>FETCH-LOGICAL-a351t-6018dc5ff296f2be6fe70bf49bfaa9cca31f9ce99a1f8ba924a38eee91770d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac970206r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac970206r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2795210$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansfield, James R</creatorcontrib><creatorcontrib>Sowa, Michael G</creatorcontrib><creatorcontrib>Scarth, Gordon B</creatorcontrib><creatorcontrib>Somorjai, Rajmund L</creatorcontrib><creatorcontrib>Mantsch, Henry H</creatorcontrib><title>Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel method of analyzing spectroscopic imaging data is presented. A fuzzy C-means clustering algorithm has been applied to the analysis of near-infrared spectroscopic imaging data acquired with the combination of a CCD camera and a liquid crystal tunable filter. The use of fuzzy C-means clustering dramatically increased the information obtained from near-IR spectroscopic images and allowed for the detection of small subregions of the image that contained novel and unanticipated spectral features, without the need for a priori knowledge of the chemical composition of the sample. Two illustrative samples were analyzed, one comprised of four different inks printed on label paper and the other containing indocyanine green and human blood patches. The regions containing the different constituents were clearly demarcated and their mean spectra determined. The mean spectra of the second sample were shown to match those obtained using a scanning near-IR spectrometer. In addition to probing the spatial and spectral characteristics of the samples, the fuzzy C-means clustering analysis also helped improve the signal-to-noise ratio of the spectra.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Scientific imaging</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkEFPAjEQhRujiYge_AcbowcPq9Mu226PuIqQQDQBo7dmtrRkEVhsdxPh11sDwYOnOcw3b957hFxSuKPA6D1qKYABd0ekRVMGMc8ydkxaAJDETACckjPv5wCUAuUt8tBd4WLjSx9VNhqvja5d5XW1LnU0WOKsXM2iR6wxKjZRr9luN1EejwyufJQvGl8bF4BzcmJx4c3FfrbJW-9pkvfj4cvzIO8OY0xSWsccaDbVqbVMcssKw60RUNiOLCyi1BoTaqU2UiK1WYGSdTDJjDGSCgFTbpM2udrprl311Rhfq3nVuGDfK0ZFxrlkMkC3O0iHHN4Zq9auXKLbKArqtyF1aCiw13tB9BoX1uFKl_5wwIRMGYWAxTusDIG_D2t0n4qLRKRq8jpW41H__YFnPfUR-Jsdj9r_Wfz__geITYBb</recordid><startdate>19970815</startdate><enddate>19970815</enddate><creator>Mansfield, James R</creator><creator>Sowa, Michael G</creator><creator>Scarth, Gordon B</creator><creator>Somorjai, Rajmund L</creator><creator>Mantsch, Henry H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>19970815</creationdate><title>Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering</title><author>Mansfield, James R ; Sowa, Michael G ; Scarth, Gordon B ; Somorjai, Rajmund L ; Mantsch, Henry H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-6018dc5ff296f2be6fe70bf49bfaa9cca31f9ce99a1f8ba924a38eee91770d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Scientific imaging</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansfield, James R</creatorcontrib><creatorcontrib>Sowa, Michael G</creatorcontrib><creatorcontrib>Scarth, Gordon B</creatorcontrib><creatorcontrib>Somorjai, Rajmund L</creatorcontrib><creatorcontrib>Mantsch, Henry H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansfield, James R</au><au>Sowa, Michael G</au><au>Scarth, Gordon B</au><au>Somorjai, Rajmund L</au><au>Mantsch, Henry H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1997-08-15</date><risdate>1997</risdate><volume>69</volume><issue>16</issue><spage>3370</spage><epage>3374</epage><pages>3370-3374</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel method of analyzing spectroscopic imaging data is presented. A fuzzy C-means clustering algorithm has been applied to the analysis of near-infrared spectroscopic imaging data acquired with the combination of a CCD camera and a liquid crystal tunable filter. The use of fuzzy C-means clustering dramatically increased the information obtained from near-IR spectroscopic images and allowed for the detection of small subregions of the image that contained novel and unanticipated spectral features, without the need for a priori knowledge of the chemical composition of the sample. Two illustrative samples were analyzed, one comprised of four different inks printed on label paper and the other containing indocyanine green and human blood patches. The regions containing the different constituents were clearly demarcated and their mean spectra determined. The mean spectra of the second sample were shown to match those obtained using a scanning near-IR spectrometer. In addition to probing the spatial and spectral characteristics of the samples, the fuzzy C-means clustering analysis also helped improve the signal-to-noise ratio of the spectra.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ac970206r</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1997-08, Vol.69 (16), p.3370-3374
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_217866929
source American Chemical Society Journals
subjects Algorithms
Analytical chemistry
Chemistry
Exact sciences and technology
Scientific imaging
Spectrometric and optical methods
title Analysis of Spectroscopic Imaging Data by Fuzzy C-Means Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Spectroscopic%20Imaging%20Data%20by%20Fuzzy%20C-Means%20Clustering&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mansfield,%20James%20R&rft.date=1997-08-15&rft.volume=69&rft.issue=16&rft.spage=3370&rft.epage=3374&rft.pages=3370-3374&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac970206r&rft_dat=%3Cproquest_cross%3E13678331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217866929&rft_id=info:pmid/&rfr_iscdi=true