Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods
The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev app...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-02, Vol.29 (2), p.023116-023116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023116 |
---|---|
container_issue | 2 |
container_start_page | 023116 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 29 |
creator | Saad, K. M. Khader, M. M. Gómez-Aguilar, J. F. Baleanu, Dumitru |
description | The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels. |
doi_str_mv | 10.1063/1.5086771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2178424649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178424649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</originalsourceid><addsrcrecordid>eNp90c1u1DAQB3ALUdFSOPACyBIXQEqxEzu2j6WiUKmCS-_RxJl0UyVx6o-t9tZX6LGv1ych6S4FgcTJlufn_8geQt5wdsRZWXziR5LpUin-jBxwpk2mSp0_X_ZSZFwytk9ehnDFGON5IV-Q_YLpvFBMHpC772lA31noaXB9ip0bA3UtjSukrQe7HMy10y6s0D_c3gcaNxNSvE6wtTddXNHjCOMljJB9hh5hTH9ebeb49YzXSOsNTaEbL2mY0EY_F63re2cfo-iAceWa8IrstdAHfL1bD8nF6ZeLk2_Z-Y-vZyfH55ktdBEzUK1WWpfIQbQMbV4LY0RueN1Y2zSGA1PcSpMLsFKAkUoyUxfcWFDClMUheb-Nnby7ThhiNXTBYt_DiC6FKudaSa6FWOi7v-iVS35-26KUFrkohZnVh62y3oXgsa0m3w3gNxVn1TKmile7Mc327S4x1QM2T_LXXGbwcQuC7eLj9zyZtfO_k6qpaf-H_239E3eLrCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178424649</pqid></control><display><type>article</type><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</creator><creatorcontrib>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</creatorcontrib><description>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5086771</identifier><identifier>PMID: 30823705</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biological models (mathematics) ; Chebyshev approximation ; Collocation methods ; Differential equations ; Error functions ; Finite difference method ; Nonlinear equations ; Numerical methods ; Ordinary differential equations ; Polynomials</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023116-023116</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</citedby><cites>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</cites><orcidid>0000-0001-9403-3767 ; 0000-0002-0286-7244 ; 0000000202867244 ; 0000000194033767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30823705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saad, K. M.</creatorcontrib><creatorcontrib>Khader, M. M.</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</description><subject>Biological models (mathematics)</subject><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Error functions</subject><subject>Finite difference method</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>Ordinary differential equations</subject><subject>Polynomials</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90c1u1DAQB3ALUdFSOPACyBIXQEqxEzu2j6WiUKmCS-_RxJl0UyVx6o-t9tZX6LGv1ych6S4FgcTJlufn_8geQt5wdsRZWXziR5LpUin-jBxwpk2mSp0_X_ZSZFwytk9ehnDFGON5IV-Q_YLpvFBMHpC772lA31noaXB9ip0bA3UtjSukrQe7HMy10y6s0D_c3gcaNxNSvE6wtTddXNHjCOMljJB9hh5hTH9ebeb49YzXSOsNTaEbL2mY0EY_F63re2cfo-iAceWa8IrstdAHfL1bD8nF6ZeLk2_Z-Y-vZyfH55ktdBEzUK1WWpfIQbQMbV4LY0RueN1Y2zSGA1PcSpMLsFKAkUoyUxfcWFDClMUheb-Nnby7ThhiNXTBYt_DiC6FKudaSa6FWOi7v-iVS35-26KUFrkohZnVh62y3oXgsa0m3w3gNxVn1TKmile7Mc327S4x1QM2T_LXXGbwcQuC7eLj9zyZtfO_k6qpaf-H_239E3eLrCU</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Saad, K. M.</creator><creator>Khader, M. M.</creator><creator>Gómez-Aguilar, J. F.</creator><creator>Baleanu, Dumitru</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000000202867244</orcidid><orcidid>https://orcid.org/0000000194033767</orcidid></search><sort><creationdate>201902</creationdate><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><author>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological models (mathematics)</topic><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Error functions</topic><topic>Finite difference method</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>Ordinary differential equations</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saad, K. M.</creatorcontrib><creatorcontrib>Khader, M. M.</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad, K. M.</au><au>Khader, M. M.</au><au>Gómez-Aguilar, J. F.</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-02</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>023116</spage><epage>023116</epage><pages>023116-023116</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30823705</pmid><doi>10.1063/1.5086771</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000000202867244</orcidid><orcidid>https://orcid.org/0000000194033767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023116-023116 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2178424649 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Biological models (mathematics) Chebyshev approximation Collocation methods Differential equations Error functions Finite difference method Nonlinear equations Numerical methods Ordinary differential equations Polynomials |
title | Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%20the%20fractional%20Fisher%E2%80%99s%20type%20equations%20with%20Atangana-Baleanu%20fractional%20derivative%20by%20using%20spectral%20collocation%20methods&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Saad,%20K.%20M.&rft.date=2019-02&rft.volume=29&rft.issue=2&rft.spage=023116&rft.epage=023116&rft.pages=023116-023116&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5086771&rft_dat=%3Cproquest_pubme%3E2178424649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178424649&rft_id=info:pmid/30823705&rfr_iscdi=true |