Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods

The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2019-02, Vol.29 (2), p.023116-023116
Hauptverfasser: Saad, K. M., Khader, M. M., Gómez-Aguilar, J. F., Baleanu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023116
container_issue 2
container_start_page 023116
container_title Chaos (Woodbury, N.Y.)
container_volume 29
creator Saad, K. M.
Khader, M. M.
Gómez-Aguilar, J. F.
Baleanu, Dumitru
description The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.
doi_str_mv 10.1063/1.5086771
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2178424649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178424649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</originalsourceid><addsrcrecordid>eNp90c1u1DAQB3ALUdFSOPACyBIXQEqxEzu2j6WiUKmCS-_RxJl0UyVx6o-t9tZX6LGv1ych6S4FgcTJlufn_8geQt5wdsRZWXziR5LpUin-jBxwpk2mSp0_X_ZSZFwytk9ehnDFGON5IV-Q_YLpvFBMHpC772lA31noaXB9ip0bA3UtjSukrQe7HMy10y6s0D_c3gcaNxNSvE6wtTddXNHjCOMljJB9hh5hTH9ebeb49YzXSOsNTaEbL2mY0EY_F63re2cfo-iAceWa8IrstdAHfL1bD8nF6ZeLk2_Z-Y-vZyfH55ktdBEzUK1WWpfIQbQMbV4LY0RueN1Y2zSGA1PcSpMLsFKAkUoyUxfcWFDClMUheb-Nnby7ThhiNXTBYt_DiC6FKudaSa6FWOi7v-iVS35-26KUFrkohZnVh62y3oXgsa0m3w3gNxVn1TKmile7Mc327S4x1QM2T_LXXGbwcQuC7eLj9zyZtfO_k6qpaf-H_239E3eLrCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178424649</pqid></control><display><type>article</type><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</creator><creatorcontrib>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</creatorcontrib><description>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5086771</identifier><identifier>PMID: 30823705</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biological models (mathematics) ; Chebyshev approximation ; Collocation methods ; Differential equations ; Error functions ; Finite difference method ; Nonlinear equations ; Numerical methods ; Ordinary differential equations ; Polynomials</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023116-023116</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</citedby><cites>FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</cites><orcidid>0000-0001-9403-3767 ; 0000-0002-0286-7244 ; 0000000202867244 ; 0000000194033767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30823705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saad, K. M.</creatorcontrib><creatorcontrib>Khader, M. M.</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</description><subject>Biological models (mathematics)</subject><subject>Chebyshev approximation</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Error functions</subject><subject>Finite difference method</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>Ordinary differential equations</subject><subject>Polynomials</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90c1u1DAQB3ALUdFSOPACyBIXQEqxEzu2j6WiUKmCS-_RxJl0UyVx6o-t9tZX6LGv1ych6S4FgcTJlufn_8geQt5wdsRZWXziR5LpUin-jBxwpk2mSp0_X_ZSZFwytk9ehnDFGON5IV-Q_YLpvFBMHpC772lA31noaXB9ip0bA3UtjSukrQe7HMy10y6s0D_c3gcaNxNSvE6wtTddXNHjCOMljJB9hh5hTH9ebeb49YzXSOsNTaEbL2mY0EY_F63re2cfo-iAceWa8IrstdAHfL1bD8nF6ZeLk2_Z-Y-vZyfH55ktdBEzUK1WWpfIQbQMbV4LY0RueN1Y2zSGA1PcSpMLsFKAkUoyUxfcWFDClMUheb-Nnby7ThhiNXTBYt_DiC6FKudaSa6FWOi7v-iVS35-26KUFrkohZnVh62y3oXgsa0m3w3gNxVn1TKmile7Mc327S4x1QM2T_LXXGbwcQuC7eLj9zyZtfO_k6qpaf-H_239E3eLrCU</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Saad, K. M.</creator><creator>Khader, M. M.</creator><creator>Gómez-Aguilar, J. F.</creator><creator>Baleanu, Dumitru</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000000202867244</orcidid><orcidid>https://orcid.org/0000000194033767</orcidid></search><sort><creationdate>201902</creationdate><title>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</title><author>Saad, K. M. ; Khader, M. M. ; Gómez-Aguilar, J. F. ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a7f87886e1a4f0ec2b4994291bdccdd91a071c5924ac54a957509b319ca74963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological models (mathematics)</topic><topic>Chebyshev approximation</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Error functions</topic><topic>Finite difference method</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>Ordinary differential equations</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saad, K. M.</creatorcontrib><creatorcontrib>Khader, M. M.</creatorcontrib><creatorcontrib>Gómez-Aguilar, J. F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad, K. M.</au><au>Khader, M. M.</au><au>Gómez-Aguilar, J. F.</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-02</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>023116</spage><epage>023116</epage><pages>023116-023116</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The main objective of this paper is to investigate an accurate numerical method for solving a biological fractional model via Atangana-Baleanu fractional derivative. We focused our attention on linear and nonlinear Fisher’s equations. We use the spectral collocation method based on the Chebyshev approximations. This method reduced the nonlinear equations to a system of ordinary differential equations by using the properties of Chebyshev polynomials and then solved them by using the finite difference method. This is the first time that this method is used to solve nonlinear equations in Atangana-Baleanu sense. We present the effectiveness and accuracy of the proposed method by computing the absolute error and the residual error functions. The results show that the given procedure is an easy and efficient tool to investigate the solution of nonlinear equations with local and non-local singular kernels.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30823705</pmid><doi>10.1063/1.5086771</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><orcidid>https://orcid.org/0000000202867244</orcidid><orcidid>https://orcid.org/0000000194033767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2019-02, Vol.29 (2), p.023116-023116
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_journals_2178424649
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Biological models (mathematics)
Chebyshev approximation
Collocation methods
Differential equations
Error functions
Finite difference method
Nonlinear equations
Numerical methods
Ordinary differential equations
Polynomials
title Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%20the%20fractional%20Fisher%E2%80%99s%20type%20equations%20with%20Atangana-Baleanu%20fractional%20derivative%20by%20using%20spectral%20collocation%20methods&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Saad,%20K.%20M.&rft.date=2019-02&rft.volume=29&rft.issue=2&rft.spage=023116&rft.epage=023116&rft.pages=023116-023116&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5086771&rft_dat=%3Cproquest_pubme%3E2178424649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178424649&rft_id=info:pmid/30823705&rfr_iscdi=true