Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum
We applied our millimeter-scale laser Doppler velocimeter (µ-LDV) as an absolute blood flow rate sensor in a thin tube (0.5 mm inner diameter) for precise control of the blood flow rate. We proposed a sequence of signal processing, frequency weighting modification, and peak detection, and succeeded...
Gespeichert in:
Veröffentlicht in: | Sensors and materials 2018-01, Vol.30 (12), p.3009 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 3009 |
container_title | Sensors and materials |
container_volume | 30 |
creator | Morita, Nobutomo Iwasaki, Wataru Nogami, Hirofumi Nakashima, Fumiya Higurashi, Eiji Sawada, Renshi |
description | We applied our millimeter-scale laser Doppler velocimeter (µ-LDV) as an absolute blood flow rate sensor in a thin tube (0.5 mm inner diameter) for precise control of the blood flow rate. We proposed a sequence of signal processing, frequency weighting modification, and peak detection, and succeeded in the detection of the beat signal induced by flow at the center of the tube. Flow rates of 20, 40, and 60% hematocrit [volume percentage of red blood cells (RBCs) in blood] were measured. The errors with respect to the hematocrit change were 14.2% for 58.9 µl/min, 5.1% for 235.6 µl/min, and 3.6% for 471.1 µl/min (corresponding maximum flow velocity of 80 mm/s), whereas the error ranges determined by laser Doppler flowmetry (LDF) calculation, which is generally used for blood flow measurement by the laser Doppler effect, were 89.2, 42.7, and 19.5%, respectively. The results show the potential application of µ-LDV as an integrable absolute blood flow rate sensor on a microchannel such as a thin tube and micro-total analysis system (µ-TAS) for a wide hematocrit range. |
doi_str_mv | 10.18494/SAM.2018.2010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178127733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178127733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ff29d418d3f52a41b890a651def5ea59cddddda17499904bac3b243a30e3769b3</originalsourceid><addsrcrecordid>eNotkUFv2zAMhX3YgBZdrzsL6NmZZMmxdUyyZh0Qo8XS9mrQEt2qsCVPkhv0j-73TF7GwyMEfnyg8LLsK6MrVgspvh03zaqgrF6EfsouqWQiF5KXF9l1CG-UpllJ18X6MvtzhyNEp7yJubEBbTDRvCPZdMENc0SyHZzTZD-4E_kF6d0ghNnjiDYSYwldlfk45trAiBH9Gdy9grU4kKdg7Atpbptj3kFATQ5JPfnupmlI_RkHp8x572TiKzmaFwsDaZw2vVEQjbOkd2khISouXluESPYef89o1QfpvRvJ1jvQ5MGdks1xSqCfxy_Z5x6GgNf_-1X2tL993N3lh_sfP3ebQ654Uce87wupBas178sCBOtqSWFdMo19iVBKpZcCVgkpJRUdKN4VggOnyKu17PhVdnP2nbxLN4XYvrnZp0-EtmBVzYqq4jxRqzOlvAvBY99O3ozgP1pG23-RtSmydolsEcr_ArzLjwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178127733</pqid></control><display><type>article</type><title>Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Morita, Nobutomo ; Iwasaki, Wataru ; Nogami, Hirofumi ; Nakashima, Fumiya ; Higurashi, Eiji ; Sawada, Renshi</creator><creatorcontrib>Morita, Nobutomo ; Iwasaki, Wataru ; Nogami, Hirofumi ; Nakashima, Fumiya ; Higurashi, Eiji ; Sawada, Renshi</creatorcontrib><description>We applied our millimeter-scale laser Doppler velocimeter (µ-LDV) as an absolute blood flow rate sensor in a thin tube (0.5 mm inner diameter) for precise control of the blood flow rate. We proposed a sequence of signal processing, frequency weighting modification, and peak detection, and succeeded in the detection of the beat signal induced by flow at the center of the tube. Flow rates of 20, 40, and 60% hematocrit [volume percentage of red blood cells (RBCs) in blood] were measured. The errors with respect to the hematocrit change were 14.2% for 58.9 µl/min, 5.1% for 235.6 µl/min, and 3.6% for 471.1 µl/min (corresponding maximum flow velocity of 80 mm/s), whereas the error ranges determined by laser Doppler flowmetry (LDF) calculation, which is generally used for blood flow measurement by the laser Doppler effect, were 89.2, 42.7, and 19.5%, respectively. The results show the potential application of µ-LDV as an integrable absolute blood flow rate sensor on a microchannel such as a thin tube and micro-total analysis system (µ-TAS) for a wide hematocrit range.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2018.2010</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Beat frequencies ; Blood flow ; Doppler effect ; Erythrocytes ; Flow measurement ; Flow velocity ; Hematocrit ; Laser doppler velocimeters ; Lasers ; Microchannels ; Signal processing</subject><ispartof>Sensors and materials, 2018-01, Vol.30 (12), p.3009</ispartof><rights>Copyright MYU Scientific Publishing Division 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Morita, Nobutomo</creatorcontrib><creatorcontrib>Iwasaki, Wataru</creatorcontrib><creatorcontrib>Nogami, Hirofumi</creatorcontrib><creatorcontrib>Nakashima, Fumiya</creatorcontrib><creatorcontrib>Higurashi, Eiji</creatorcontrib><creatorcontrib>Sawada, Renshi</creatorcontrib><title>Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum</title><title>Sensors and materials</title><description>We applied our millimeter-scale laser Doppler velocimeter (µ-LDV) as an absolute blood flow rate sensor in a thin tube (0.5 mm inner diameter) for precise control of the blood flow rate. We proposed a sequence of signal processing, frequency weighting modification, and peak detection, and succeeded in the detection of the beat signal induced by flow at the center of the tube. Flow rates of 20, 40, and 60% hematocrit [volume percentage of red blood cells (RBCs) in blood] were measured. The errors with respect to the hematocrit change were 14.2% for 58.9 µl/min, 5.1% for 235.6 µl/min, and 3.6% for 471.1 µl/min (corresponding maximum flow velocity of 80 mm/s), whereas the error ranges determined by laser Doppler flowmetry (LDF) calculation, which is generally used for blood flow measurement by the laser Doppler effect, were 89.2, 42.7, and 19.5%, respectively. The results show the potential application of µ-LDV as an integrable absolute blood flow rate sensor on a microchannel such as a thin tube and micro-total analysis system (µ-TAS) for a wide hematocrit range.</description><subject>Beat frequencies</subject><subject>Blood flow</subject><subject>Doppler effect</subject><subject>Erythrocytes</subject><subject>Flow measurement</subject><subject>Flow velocity</subject><subject>Hematocrit</subject><subject>Laser doppler velocimeters</subject><subject>Lasers</subject><subject>Microchannels</subject><subject>Signal processing</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkUFv2zAMhX3YgBZdrzsL6NmZZMmxdUyyZh0Qo8XS9mrQEt2qsCVPkhv0j-73TF7GwyMEfnyg8LLsK6MrVgspvh03zaqgrF6EfsouqWQiF5KXF9l1CG-UpllJ18X6MvtzhyNEp7yJubEBbTDRvCPZdMENc0SyHZzTZD-4E_kF6d0ghNnjiDYSYwldlfk45trAiBH9Gdy9grU4kKdg7Atpbptj3kFATQ5JPfnupmlI_RkHp8x572TiKzmaFwsDaZw2vVEQjbOkd2khISouXluESPYef89o1QfpvRvJ1jvQ5MGdks1xSqCfxy_Z5x6GgNf_-1X2tL993N3lh_sfP3ebQ654Uce87wupBas178sCBOtqSWFdMo19iVBKpZcCVgkpJRUdKN4VggOnyKu17PhVdnP2nbxLN4XYvrnZp0-EtmBVzYqq4jxRqzOlvAvBY99O3ozgP1pG23-RtSmydolsEcr_ArzLjwM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Morita, Nobutomo</creator><creator>Iwasaki, Wataru</creator><creator>Nogami, Hirofumi</creator><creator>Nakashima, Fumiya</creator><creator>Higurashi, Eiji</creator><creator>Sawada, Renshi</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180101</creationdate><title>Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum</title><author>Morita, Nobutomo ; Iwasaki, Wataru ; Nogami, Hirofumi ; Nakashima, Fumiya ; Higurashi, Eiji ; Sawada, Renshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ff29d418d3f52a41b890a651def5ea59cddddda17499904bac3b243a30e3769b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beat frequencies</topic><topic>Blood flow</topic><topic>Doppler effect</topic><topic>Erythrocytes</topic><topic>Flow measurement</topic><topic>Flow velocity</topic><topic>Hematocrit</topic><topic>Laser doppler velocimeters</topic><topic>Lasers</topic><topic>Microchannels</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Nobutomo</creatorcontrib><creatorcontrib>Iwasaki, Wataru</creatorcontrib><creatorcontrib>Nogami, Hirofumi</creatorcontrib><creatorcontrib>Nakashima, Fumiya</creatorcontrib><creatorcontrib>Higurashi, Eiji</creatorcontrib><creatorcontrib>Sawada, Renshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Nobutomo</au><au>Iwasaki, Wataru</au><au>Nogami, Hirofumi</au><au>Nakashima, Fumiya</au><au>Higurashi, Eiji</au><au>Sawada, Renshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum</atitle><jtitle>Sensors and materials</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>30</volume><issue>12</issue><spage>3009</spage><pages>3009-</pages><issn>0914-4935</issn><abstract>We applied our millimeter-scale laser Doppler velocimeter (µ-LDV) as an absolute blood flow rate sensor in a thin tube (0.5 mm inner diameter) for precise control of the blood flow rate. We proposed a sequence of signal processing, frequency weighting modification, and peak detection, and succeeded in the detection of the beat signal induced by flow at the center of the tube. Flow rates of 20, 40, and 60% hematocrit [volume percentage of red blood cells (RBCs) in blood] were measured. The errors with respect to the hematocrit change were 14.2% for 58.9 µl/min, 5.1% for 235.6 µl/min, and 3.6% for 471.1 µl/min (corresponding maximum flow velocity of 80 mm/s), whereas the error ranges determined by laser Doppler flowmetry (LDF) calculation, which is generally used for blood flow measurement by the laser Doppler effect, were 89.2, 42.7, and 19.5%, respectively. The results show the potential application of µ-LDV as an integrable absolute blood flow rate sensor on a microchannel such as a thin tube and micro-total analysis system (µ-TAS) for a wide hematocrit range.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2018.2010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0914-4935 |
ispartof | Sensors and materials, 2018-01, Vol.30 (12), p.3009 |
issn | 0914-4935 |
language | eng |
recordid | cdi_proquest_journals_2178127733 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Beat frequencies Blood flow Doppler effect Erythrocytes Flow measurement Flow velocity Hematocrit Laser doppler velocimeters Lasers Microchannels Signal processing |
title | Hematocrit-insensitive Absolute Blood Flow Rate Measurement in 0.5-mm-diameter Flow Channel Using MEMS-based Laser Doppler Velocimeter with Signal Modification for Detecting Beat Frequency from Broad Power Spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hematocrit-insensitive%20Absolute%20Blood%20Flow%20Rate%20Measurement%20in%200.5-mm-diameter%20Flow%20Channel%20Using%20MEMS-based%20Laser%20Doppler%20Velocimeter%20with%20Signal%20Modification%20for%20Detecting%20Beat%20Frequency%20from%20Broad%20Power%20Spectrum&rft.jtitle=Sensors%20and%20materials&rft.au=Morita,%20Nobutomo&rft.date=2018-01-01&rft.volume=30&rft.issue=12&rft.spage=3009&rft.pages=3009-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2018.2010&rft_dat=%3Cproquest_cross%3E2178127733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178127733&rft_id=info:pmid/&rfr_iscdi=true |