Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency
One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representati...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-01, Vol.167, p.189-197 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | |
container_start_page | 189 |
container_title | Energy (Oxford) |
container_volume | 167 |
creator | Watson, Jamison Lu, Jianwen de Souza, Raquel Si, Buchun Zhang, Yuanhui Liu, Zhidan |
description | One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values.
•Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions. |
doi_str_mv | 10.1016/j.energy.2018.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178124937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218322072</els_id><sourcerecordid>2178124937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMIfMFhiTvCN8zIDEiBeUiUWmC3XvgZXaQx2WpGNT8clnZnucB73nEPIObAcGNSXqxx7DO9jXjBoc4CcMX5AZtA2PKubtjokM8ZrllVlWRyTkxhXjLGqFWJGfu6tRT1E6i0dPpDi9xCUHpzvafTdFvsEuZ5-jCb4hIe16mjnvjZo96zP4DXGiPGK3jqvw8Yg9a6jXxvVuWGkqjd0Ske177cY4k6F1jrtsNfjKTmyqot4tr9z8vZw_3r3lC1eHp_vbhaZ5g0M2ZJVmutmKZSGEhgKVqhlC5WtKy60KURZ1SVgaxpuuK4FcqZqYewSauQcGj4nF5NvCpzix0Gu_Cb06aUsoGmhKAXfscqJpYOPMaCVn8GtVRglMLnbWq7k1EbutpYAMm2dZNeTDFODrcMg4187NC6kdaXx7n-DX-tOjKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178124937</pqid></control><display><type>article</type><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</creator><creatorcontrib>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</creatorcontrib><description>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values.
•Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.11.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetone ; Algae ; Biocrude oil ; Carbohydrates ; Chemical bonds ; Chemical composition ; Chemical compounds ; Chlorella ; Dichloromethane ; Dipole interactions ; Drying oils ; Elemental distribution ; Energy consumption ; Energy conversion ; Energy conversion efficiency ; Energy efficiency ; Energy recovery ; Enteromorpha ; Extraction solvent ; Hydrogen bonding ; Hydrothermal liquefaction ; Liquefaction ; Nannochloropsis ; Oil ; Organic chemistry ; Polarity ; Proteins ; Raw materials ; Solvents ; Toluene ; Yield</subject><ispartof>Energy (Oxford), 2019-01, Vol.167, p.189-197</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</citedby><cites>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</cites><orcidid>0000-0002-4411-7644 ; 0000-0002-6020-0798 ; 0000-0002-4908-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Watson, Jamison</creatorcontrib><creatorcontrib>Lu, Jianwen</creatorcontrib><creatorcontrib>de Souza, Raquel</creatorcontrib><creatorcontrib>Si, Buchun</creatorcontrib><creatorcontrib>Zhang, Yuanhui</creatorcontrib><creatorcontrib>Liu, Zhidan</creatorcontrib><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><title>Energy (Oxford)</title><description>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values.
•Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</description><subject>Acetone</subject><subject>Algae</subject><subject>Biocrude oil</subject><subject>Carbohydrates</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemical compounds</subject><subject>Chlorella</subject><subject>Dichloromethane</subject><subject>Dipole interactions</subject><subject>Drying oils</subject><subject>Elemental distribution</subject><subject>Energy consumption</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy recovery</subject><subject>Enteromorpha</subject><subject>Extraction solvent</subject><subject>Hydrogen bonding</subject><subject>Hydrothermal liquefaction</subject><subject>Liquefaction</subject><subject>Nannochloropsis</subject><subject>Oil</subject><subject>Organic chemistry</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Solvents</subject><subject>Toluene</subject><subject>Yield</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUtRBIlMIfMFhiTvCN8zIDEiBeUiUWmC3XvgZXaQx2WpGNT8clnZnucB73nEPIObAcGNSXqxx7DO9jXjBoc4CcMX5AZtA2PKubtjokM8ZrllVlWRyTkxhXjLGqFWJGfu6tRT1E6i0dPpDi9xCUHpzvafTdFvsEuZ5-jCb4hIe16mjnvjZo96zP4DXGiPGK3jqvw8Yg9a6jXxvVuWGkqjd0Ske177cY4k6F1jrtsNfjKTmyqot4tr9z8vZw_3r3lC1eHp_vbhaZ5g0M2ZJVmutmKZSGEhgKVqhlC5WtKy60KURZ1SVgaxpuuK4FcqZqYewSauQcGj4nF5NvCpzix0Gu_Cb06aUsoGmhKAXfscqJpYOPMaCVn8GtVRglMLnbWq7k1EbutpYAMm2dZNeTDFODrcMg4187NC6kdaXx7n-DX-tOjKU</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Watson, Jamison</creator><creator>Lu, Jianwen</creator><creator>de Souza, Raquel</creator><creator>Si, Buchun</creator><creator>Zhang, Yuanhui</creator><creator>Liu, Zhidan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4411-7644</orcidid><orcidid>https://orcid.org/0000-0002-6020-0798</orcidid><orcidid>https://orcid.org/0000-0002-4908-7579</orcidid></search><sort><creationdate>20190115</creationdate><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><author>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Algae</topic><topic>Biocrude oil</topic><topic>Carbohydrates</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemical compounds</topic><topic>Chlorella</topic><topic>Dichloromethane</topic><topic>Dipole interactions</topic><topic>Drying oils</topic><topic>Elemental distribution</topic><topic>Energy consumption</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy recovery</topic><topic>Enteromorpha</topic><topic>Extraction solvent</topic><topic>Hydrogen bonding</topic><topic>Hydrothermal liquefaction</topic><topic>Liquefaction</topic><topic>Nannochloropsis</topic><topic>Oil</topic><topic>Organic chemistry</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Solvents</topic><topic>Toluene</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Jamison</creatorcontrib><creatorcontrib>Lu, Jianwen</creatorcontrib><creatorcontrib>de Souza, Raquel</creatorcontrib><creatorcontrib>Si, Buchun</creatorcontrib><creatorcontrib>Zhang, Yuanhui</creatorcontrib><creatorcontrib>Liu, Zhidan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Jamison</au><au>Lu, Jianwen</au><au>de Souza, Raquel</au><au>Si, Buchun</au><au>Zhang, Yuanhui</au><au>Liu, Zhidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>167</volume><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values.
•Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.11.003</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4411-7644</orcidid><orcidid>https://orcid.org/0000-0002-6020-0798</orcidid><orcidid>https://orcid.org/0000-0002-4908-7579</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-01, Vol.167, p.189-197 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2178124937 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acetone Algae Biocrude oil Carbohydrates Chemical bonds Chemical composition Chemical compounds Chlorella Dichloromethane Dipole interactions Drying oils Elemental distribution Energy consumption Energy conversion Energy conversion efficiency Energy efficiency Energy recovery Enteromorpha Extraction solvent Hydrogen bonding Hydrothermal liquefaction Liquefaction Nannochloropsis Oil Organic chemistry Polarity Proteins Raw materials Solvents Toluene Yield |
title | Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20extraction%20solvents%20in%20hydrothermal%20liquefaction%20processes:%20Biocrude%20oil%20quality%20and%20energy%20conversion%20efficiency&rft.jtitle=Energy%20(Oxford)&rft.au=Watson,%20Jamison&rft.date=2019-01-15&rft.volume=167&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.11.003&rft_dat=%3Cproquest_cross%3E2178124937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178124937&rft_id=info:pmid/&rft_els_id=S0360544218322072&rfr_iscdi=true |