Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency

One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-01, Vol.167, p.189-197
Hauptverfasser: Watson, Jamison, Lu, Jianwen, de Souza, Raquel, Si, Buchun, Zhang, Yuanhui, Liu, Zhidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue
container_start_page 189
container_title Energy (Oxford)
container_volume 167
creator Watson, Jamison
Lu, Jianwen
de Souza, Raquel
Si, Buchun
Zhang, Yuanhui
Liu, Zhidan
description One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values. •Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.
doi_str_mv 10.1016/j.energy.2018.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178124937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218322072</els_id><sourcerecordid>2178124937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMIfMFhiTvCN8zIDEiBeUiUWmC3XvgZXaQx2WpGNT8clnZnucB73nEPIObAcGNSXqxx7DO9jXjBoc4CcMX5AZtA2PKubtjokM8ZrllVlWRyTkxhXjLGqFWJGfu6tRT1E6i0dPpDi9xCUHpzvafTdFvsEuZ5-jCb4hIe16mjnvjZo96zP4DXGiPGK3jqvw8Yg9a6jXxvVuWGkqjd0Ske177cY4k6F1jrtsNfjKTmyqot4tr9z8vZw_3r3lC1eHp_vbhaZ5g0M2ZJVmutmKZSGEhgKVqhlC5WtKy60KURZ1SVgaxpuuK4FcqZqYewSauQcGj4nF5NvCpzix0Gu_Cb06aUsoGmhKAXfscqJpYOPMaCVn8GtVRglMLnbWq7k1EbutpYAMm2dZNeTDFODrcMg4187NC6kdaXx7n-DX-tOjKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178124937</pqid></control><display><type>article</type><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</creator><creatorcontrib>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</creatorcontrib><description>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values. •Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.11.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetone ; Algae ; Biocrude oil ; Carbohydrates ; Chemical bonds ; Chemical composition ; Chemical compounds ; Chlorella ; Dichloromethane ; Dipole interactions ; Drying oils ; Elemental distribution ; Energy consumption ; Energy conversion ; Energy conversion efficiency ; Energy efficiency ; Energy recovery ; Enteromorpha ; Extraction solvent ; Hydrogen bonding ; Hydrothermal liquefaction ; Liquefaction ; Nannochloropsis ; Oil ; Organic chemistry ; Polarity ; Proteins ; Raw materials ; Solvents ; Toluene ; Yield</subject><ispartof>Energy (Oxford), 2019-01, Vol.167, p.189-197</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</citedby><cites>FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</cites><orcidid>0000-0002-4411-7644 ; 0000-0002-6020-0798 ; 0000-0002-4908-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Watson, Jamison</creatorcontrib><creatorcontrib>Lu, Jianwen</creatorcontrib><creatorcontrib>de Souza, Raquel</creatorcontrib><creatorcontrib>Si, Buchun</creatorcontrib><creatorcontrib>Zhang, Yuanhui</creatorcontrib><creatorcontrib>Liu, Zhidan</creatorcontrib><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><title>Energy (Oxford)</title><description>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values. •Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</description><subject>Acetone</subject><subject>Algae</subject><subject>Biocrude oil</subject><subject>Carbohydrates</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemical compounds</subject><subject>Chlorella</subject><subject>Dichloromethane</subject><subject>Dipole interactions</subject><subject>Drying oils</subject><subject>Elemental distribution</subject><subject>Energy consumption</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy recovery</subject><subject>Enteromorpha</subject><subject>Extraction solvent</subject><subject>Hydrogen bonding</subject><subject>Hydrothermal liquefaction</subject><subject>Liquefaction</subject><subject>Nannochloropsis</subject><subject>Oil</subject><subject>Organic chemistry</subject><subject>Polarity</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Solvents</subject><subject>Toluene</subject><subject>Yield</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUtRBIlMIfMFhiTvCN8zIDEiBeUiUWmC3XvgZXaQx2WpGNT8clnZnucB73nEPIObAcGNSXqxx7DO9jXjBoc4CcMX5AZtA2PKubtjokM8ZrllVlWRyTkxhXjLGqFWJGfu6tRT1E6i0dPpDi9xCUHpzvafTdFvsEuZ5-jCb4hIe16mjnvjZo96zP4DXGiPGK3jqvw8Yg9a6jXxvVuWGkqjd0Ske177cY4k6F1jrtsNfjKTmyqot4tr9z8vZw_3r3lC1eHp_vbhaZ5g0M2ZJVmutmKZSGEhgKVqhlC5WtKy60KURZ1SVgaxpuuK4FcqZqYewSauQcGj4nF5NvCpzix0Gu_Cb06aUsoGmhKAXfscqJpYOPMaCVn8GtVRglMLnbWq7k1EbutpYAMm2dZNeTDFODrcMg4187NC6kdaXx7n-DX-tOjKU</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Watson, Jamison</creator><creator>Lu, Jianwen</creator><creator>de Souza, Raquel</creator><creator>Si, Buchun</creator><creator>Zhang, Yuanhui</creator><creator>Liu, Zhidan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4411-7644</orcidid><orcidid>https://orcid.org/0000-0002-6020-0798</orcidid><orcidid>https://orcid.org/0000-0002-4908-7579</orcidid></search><sort><creationdate>20190115</creationdate><title>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</title><author>Watson, Jamison ; Lu, Jianwen ; de Souza, Raquel ; Si, Buchun ; Zhang, Yuanhui ; Liu, Zhidan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b05c3c7b9ac1410e902ab815f6539cd2945641e8d73d3c69e30a69dfb16e33173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>Algae</topic><topic>Biocrude oil</topic><topic>Carbohydrates</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemical compounds</topic><topic>Chlorella</topic><topic>Dichloromethane</topic><topic>Dipole interactions</topic><topic>Drying oils</topic><topic>Elemental distribution</topic><topic>Energy consumption</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy recovery</topic><topic>Enteromorpha</topic><topic>Extraction solvent</topic><topic>Hydrogen bonding</topic><topic>Hydrothermal liquefaction</topic><topic>Liquefaction</topic><topic>Nannochloropsis</topic><topic>Oil</topic><topic>Organic chemistry</topic><topic>Polarity</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Solvents</topic><topic>Toluene</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Jamison</creatorcontrib><creatorcontrib>Lu, Jianwen</creatorcontrib><creatorcontrib>de Souza, Raquel</creatorcontrib><creatorcontrib>Si, Buchun</creatorcontrib><creatorcontrib>Zhang, Yuanhui</creatorcontrib><creatorcontrib>Liu, Zhidan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Jamison</au><au>Lu, Jianwen</au><au>de Souza, Raquel</au><au>Si, Buchun</au><au>Zhang, Yuanhui</au><au>Liu, Zhidan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>167</volume><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>One prevailing issue for assessing the performance of hydrothermal liquefaction is understanding the role of the extraction solvent used for product separation. This study evaluated the extraction agent's impact on the hydrothermal liquefaction products and energy efficiency. Three representative solvents (acetone, dichloromethane, and toluene) were chosen with three representative high-carbohydrate, protein, and ash content feedstocks (Chlorella sp., Nannochloropsis sp., and Enteromorpha pr., respectively). Extraction of the oil using dichloromethane led to the highest biocrude oil yield (dry biomass) for Chlorella sp. (48.8%), toluene for Nannochloropsis sp. (23.3%), and acetone for Enteromorpha pr. (9.8%). The solvent selection led to a maximum variation of 20.4% for all oil yields. Dichloromethane produced high energy recovery values (maximum: 67.1%) and low energy consumption ratios (minimum: 0.06) regardless of the feedstock chemical composition. Dichloromethane also led to consistently high net energy values and high fossil energy ratios amongst all feedstocks. We speculate that the solvent polarity, chemical structure, hydrogen bonding, and dipole-dipole interactions influenced output parameters by the selective isolation and extraction of the chemical compounds in the biocrude oil. This study suggested that the extraction solvent selection should be carefully considered and normalized for the reporting of hydrothermal liquefaction yields and energy efficiency values. •Solvents impact biocrude production/energy efficiency of hydrothermal liquefaction.•Three solvents led to different C/N/S distributions in the hydrothermal products.•Dichloromethane led to the highest biocrude (48.8%) yield of algae.•Dichloromethane led to the highest energy recovery/lowest energy consumption ratio.•Combined effect of polarity/structure/hydrogen bonding/dipole-dipole interactions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.11.003</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4411-7644</orcidid><orcidid>https://orcid.org/0000-0002-6020-0798</orcidid><orcidid>https://orcid.org/0000-0002-4908-7579</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-01, Vol.167, p.189-197
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2178124937
source ScienceDirect Journals (5 years ago - present)
subjects Acetone
Algae
Biocrude oil
Carbohydrates
Chemical bonds
Chemical composition
Chemical compounds
Chlorella
Dichloromethane
Dipole interactions
Drying oils
Elemental distribution
Energy consumption
Energy conversion
Energy conversion efficiency
Energy efficiency
Energy recovery
Enteromorpha
Extraction solvent
Hydrogen bonding
Hydrothermal liquefaction
Liquefaction
Nannochloropsis
Oil
Organic chemistry
Polarity
Proteins
Raw materials
Solvents
Toluene
Yield
title Effects of the extraction solvents in hydrothermal liquefaction processes: Biocrude oil quality and energy conversion efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20extraction%20solvents%20in%20hydrothermal%20liquefaction%20processes:%20Biocrude%20oil%20quality%20and%20energy%20conversion%20efficiency&rft.jtitle=Energy%20(Oxford)&rft.au=Watson,%20Jamison&rft.date=2019-01-15&rft.volume=167&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.11.003&rft_dat=%3Cproquest_cross%3E2178124937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178124937&rft_id=info:pmid/&rft_els_id=S0360544218322072&rfr_iscdi=true