Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks

Summary A new model order reduction approach is proposed for parametric steady‐state nonlinear fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly parameter dependent. In this method, solutions in the predictive regime are approximated using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2019-03, Vol.117 (12), p.1234-1262
Hauptverfasser: Nair, Nirmal J., Balajewicz, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1262
container_issue 12
container_start_page 1234
container_title International journal for numerical methods in engineering
container_volume 117
creator Nair, Nirmal J.
Balajewicz, Maciej
description Summary A new model order reduction approach is proposed for parametric steady‐state nonlinear fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly parameter dependent. In this method, solutions in the predictive regime are approximated using a linear superposition of parameter‐dependent basis. The sought‐after parametric reduced bases are obtained by transporting the snapshots in a spatially and parametrically dependent transport field. Key to the proposed approach is the observation that the transport fields are typically smooth and continuous, despite the solution themselves not being so. As a result, the transport fields can be accurately expressed using a low‐order polynomial expansion. Similar to traditional projection‐based model order reduction approaches, the proposed method is formulated mathematically as a residual minimization problem for the generalized coordinates. The proposed approach is also integrated with well‐known hyper‐reduction strategies to obtain significant computational speedups. The method is successfully applied to the reduction of a parametric one‐dimensional flow in a converging‐diverging nozzle, a parametric two‐dimensional supersonic flow over a forward‐facing step, and a parametric two‐dimensional jet diffusion flame in a combustor.
doi_str_mv 10.1002/nme.5998
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178039819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178039819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-d0c605cceb0d1f4ad78ed699484599025b3cd3562a3b240720f651274640955e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUg8RMssTCQcnbiJB5RVT4kPpYyR659oYHWDrarqhsTM7-RX4KhMLLcDffcnd6HkGMGIwbAz-0SR0LKeocMGMgqAw7VLhmkkcyErNk-OQjhGYAxAfmAvE-9sqF3PqKhwao-zF2kS2dwQZ036KlHs9Kxc5aqvvdO6Tltnae98mqJ0Xf6jIaIymw-3z5CVBFpu1h1JlW3DlQ7G1VnO_v0t4E-gQZ7tAZtpOmffgmHZK9Vi4BHv31IHi8n0_F1dvtwdTO-uM10zqs6M6BLEFrjDAxrC2WqGk0pZVEXKTNwMcu1yUXJVT7jBVQc2lIwXhVlAVIIzIfkZHs3JXldYYjNs1t5m142nFU15MmQTNTpltLeheCxbXrfLZXfNAyab8tNstx8W05otkXX3QI3_3LN_d3kh_8Cas6Chw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178039819</pqid></control><display><type>article</type><title>Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nair, Nirmal J. ; Balajewicz, Maciej</creator><creatorcontrib>Nair, Nirmal J. ; Balajewicz, Maciej</creatorcontrib><description>Summary A new model order reduction approach is proposed for parametric steady‐state nonlinear fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly parameter dependent. In this method, solutions in the predictive regime are approximated using a linear superposition of parameter‐dependent basis. The sought‐after parametric reduced bases are obtained by transporting the snapshots in a spatially and parametrically dependent transport field. Key to the proposed approach is the observation that the transport fields are typically smooth and continuous, despite the solution themselves not being so. As a result, the transport fields can be accurately expressed using a low‐order polynomial expansion. Similar to traditional projection‐based model order reduction approaches, the proposed method is formulated mathematically as a residual minimization problem for the generalized coordinates. The proposed approach is also integrated with well‐known hyper‐reduction strategies to obtain significant computational speedups. The method is successfully applied to the reduction of a parametric one‐dimensional flow in a converging‐diverging nozzle, a parametric two‐dimensional supersonic flow over a forward‐facing step, and a parametric two‐dimensional jet diffusion flame in a combustor.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5998</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Combustion chambers ; hyperbolic PDE ; Mathematical models ; Model reduction ; Nozzles ; Parameters ; parametric model order reduction ; Parametric statistics ; Polynomials ; shock ; steady‐state residual ; Superposition (mathematics) ; Supersonic flow ; Transport</subject><ispartof>International journal for numerical methods in engineering, 2019-03, Vol.117 (12), p.1234-1262</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-d0c605cceb0d1f4ad78ed699484599025b3cd3562a3b240720f651274640955e3</citedby><cites>FETCH-LOGICAL-c3278-d0c605cceb0d1f4ad78ed699484599025b3cd3562a3b240720f651274640955e3</cites><orcidid>0000-0003-4431-4020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5998$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5998$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nair, Nirmal J.</creatorcontrib><creatorcontrib>Balajewicz, Maciej</creatorcontrib><title>Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks</title><title>International journal for numerical methods in engineering</title><description>Summary A new model order reduction approach is proposed for parametric steady‐state nonlinear fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly parameter dependent. In this method, solutions in the predictive regime are approximated using a linear superposition of parameter‐dependent basis. The sought‐after parametric reduced bases are obtained by transporting the snapshots in a spatially and parametrically dependent transport field. Key to the proposed approach is the observation that the transport fields are typically smooth and continuous, despite the solution themselves not being so. As a result, the transport fields can be accurately expressed using a low‐order polynomial expansion. Similar to traditional projection‐based model order reduction approaches, the proposed method is formulated mathematically as a residual minimization problem for the generalized coordinates. The proposed approach is also integrated with well‐known hyper‐reduction strategies to obtain significant computational speedups. The method is successfully applied to the reduction of a parametric one‐dimensional flow in a converging‐diverging nozzle, a parametric two‐dimensional supersonic flow over a forward‐facing step, and a parametric two‐dimensional jet diffusion flame in a combustor.</description><subject>Combustion chambers</subject><subject>hyperbolic PDE</subject><subject>Mathematical models</subject><subject>Model reduction</subject><subject>Nozzles</subject><subject>Parameters</subject><subject>parametric model order reduction</subject><subject>Parametric statistics</subject><subject>Polynomials</subject><subject>shock</subject><subject>steady‐state residual</subject><subject>Superposition (mathematics)</subject><subject>Supersonic flow</subject><subject>Transport</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUg8RMssTCQcnbiJB5RVT4kPpYyR659oYHWDrarqhsTM7-RX4KhMLLcDffcnd6HkGMGIwbAz-0SR0LKeocMGMgqAw7VLhmkkcyErNk-OQjhGYAxAfmAvE-9sqF3PqKhwao-zF2kS2dwQZ036KlHs9Kxc5aqvvdO6Tltnae98mqJ0Xf6jIaIymw-3z5CVBFpu1h1JlW3DlQ7G1VnO_v0t4E-gQZ7tAZtpOmffgmHZK9Vi4BHv31IHi8n0_F1dvtwdTO-uM10zqs6M6BLEFrjDAxrC2WqGk0pZVEXKTNwMcu1yUXJVT7jBVQc2lIwXhVlAVIIzIfkZHs3JXldYYjNs1t5m142nFU15MmQTNTpltLeheCxbXrfLZXfNAyab8tNstx8W05otkXX3QI3_3LN_d3kh_8Cas6Chw</recordid><startdate>20190323</startdate><enddate>20190323</enddate><creator>Nair, Nirmal J.</creator><creator>Balajewicz, Maciej</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4431-4020</orcidid></search><sort><creationdate>20190323</creationdate><title>Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks</title><author>Nair, Nirmal J. ; Balajewicz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-d0c605cceb0d1f4ad78ed699484599025b3cd3562a3b240720f651274640955e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combustion chambers</topic><topic>hyperbolic PDE</topic><topic>Mathematical models</topic><topic>Model reduction</topic><topic>Nozzles</topic><topic>Parameters</topic><topic>parametric model order reduction</topic><topic>Parametric statistics</topic><topic>Polynomials</topic><topic>shock</topic><topic>steady‐state residual</topic><topic>Superposition (mathematics)</topic><topic>Supersonic flow</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Nirmal J.</creatorcontrib><creatorcontrib>Balajewicz, Maciej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Nirmal J.</au><au>Balajewicz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-03-23</date><risdate>2019</risdate><volume>117</volume><issue>12</issue><spage>1234</spage><epage>1262</epage><pages>1234-1262</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary A new model order reduction approach is proposed for parametric steady‐state nonlinear fluid flows characterized by shocks and discontinuities whose spatial locations and orientations are strongly parameter dependent. In this method, solutions in the predictive regime are approximated using a linear superposition of parameter‐dependent basis. The sought‐after parametric reduced bases are obtained by transporting the snapshots in a spatially and parametrically dependent transport field. Key to the proposed approach is the observation that the transport fields are typically smooth and continuous, despite the solution themselves not being so. As a result, the transport fields can be accurately expressed using a low‐order polynomial expansion. Similar to traditional projection‐based model order reduction approaches, the proposed method is formulated mathematically as a residual minimization problem for the generalized coordinates. The proposed approach is also integrated with well‐known hyper‐reduction strategies to obtain significant computational speedups. The method is successfully applied to the reduction of a parametric one‐dimensional flow in a converging‐diverging nozzle, a parametric two‐dimensional supersonic flow over a forward‐facing step, and a parametric two‐dimensional jet diffusion flame in a combustor.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5998</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4431-4020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2019-03, Vol.117 (12), p.1234-1262
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2178039819
source Wiley Online Library Journals Frontfile Complete
subjects Combustion chambers
hyperbolic PDE
Mathematical models
Model reduction
Nozzles
Parameters
parametric model order reduction
Parametric statistics
Polynomials
shock
steady‐state residual
Superposition (mathematics)
Supersonic flow
Transport
title Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transported%20snapshot%20model%20order%20reduction%20approach%20for%20parametric,%20steady%E2%80%90state%20fluid%20flows%20containing%20parameter%E2%80%90dependent%20shocks&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Nair,%20Nirmal%20J.&rft.date=2019-03-23&rft.volume=117&rft.issue=12&rft.spage=1234&rft.epage=1262&rft.pages=1234-1262&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5998&rft_dat=%3Cproquest_cross%3E2178039819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178039819&rft_id=info:pmid/&rfr_iscdi=true