Isolated types of finite rank: an abstract Dixmier–Moeglin equivalence

Suppose T is a totally transcendental first-order theory and every minimal non-locally-modular type is nonorthogonal to a nonisolated minimal type over the empty set. It is shown that a finite rank type p = tp ( a / A ) is isolated if and only if for every b ∈ acl ( A a ) and q ∈ S ( A b ) nonisolat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2019-03, Vol.25 (1), p.1-10, Article 10
Hauptverfasser: León Sánchez, Omar, Moosa, Rahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose T is a totally transcendental first-order theory and every minimal non-locally-modular type is nonorthogonal to a nonisolated minimal type over the empty set. It is shown that a finite rank type p = tp ( a / A ) is isolated if and only if for every b ∈ acl ( A a ) and q ∈ S ( A b ) nonisolated and minimal. This applies to the theory of differentially closed fields—where it is motivated by the differential Dixmier–Moeglin equivalence problem—and the theory of compact complex manifolds.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-019-0450-6