Isolated types of finite rank: an abstract Dixmier–Moeglin equivalence
Suppose T is a totally transcendental first-order theory and every minimal non-locally-modular type is nonorthogonal to a nonisolated minimal type over the empty set. It is shown that a finite rank type p = tp ( a / A ) is isolated if and only if for every b ∈ acl ( A a ) and q ∈ S ( A b ) nonisolat...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2019-03, Vol.25 (1), p.1-10, Article 10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose
T
is a totally transcendental first-order theory and every minimal non-locally-modular type is nonorthogonal to a nonisolated minimal type over the empty set. It is shown that a finite rank type
p
=
tp
(
a
/
A
)
is isolated if and only if
for every
b
∈
acl
(
A
a
)
and
q
∈
S
(
A
b
)
nonisolated and minimal. This applies to the theory of differentially closed fields—where it is motivated by the differential Dixmier–Moeglin equivalence problem—and the theory of compact complex manifolds. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-019-0450-6 |